Suppr超能文献

使用机器学习技术在收获前对大麻花序中的四氢大麻酚酸进行快速原位近红外评估。

Rapid In Situ Near-Infrared Assessment of Tetrahydrocannabinolic Acid in Cannabis Inflorescences before Harvest Using Machine Learning.

机构信息

School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia.

Agriculture Victoria Research, AgriBio Centre, AgriBio, Melbourne, VIC 3083, Australia.

出版信息

Sensors (Basel). 2024 Aug 6;24(16):5081. doi: 10.3390/s24165081.

Abstract

Cannabis is cultivated for therapeutic and recreational purposes where delta-9 tetrahydrocannabinol (THC) is a main target for its therapeutic effects. As the global cannabis industry and research into cannabinoids expands, more efficient and cost-effective analysis methods for determining cannabinoid concentrations will be beneficial to increase efficiencies and maximize productivity. The utilization of machine learning tools to develop near-infrared (NIR) spectroscopy-based prediction models, which have been validated from accurate and sensitive chemical analysis, such as gas chromatography (GC) or liquid chromatography mass spectroscopy (LCMS), is essential. Previous research on cannabinoid prediction models targeted decarboxylated cannabinoids, such as THC, rather than the naturally occurring precursor, tetrahydrocannabinolic acid (THCA), and utilize finely ground cannabis inflorescence. The current study focuses on building prediction models for THCA concentrations in whole cannabis inflorescences prior to harvest, by employing non-destructive screening techniques so cultivators may rapidly characterize high-performing cultivars for chemotype in real time, thus facilitating targeted optimization of crossbreeding efforts. Using NIR spectroscopy and LCMS to create prediction models we can differentiate between high-THCA and even ratio classes with 100% prediction accuracy. We have also developed prediction models for THCA concentration with a = 0.78 with a prediction error average of 13%. This study demonstrates the viability of a portable handheld NIR device to predict THCA concentrations on whole cannabis samples before harvest, allowing the evaluation of cannabinoid profiles to be made earlier, therefore increasing high-throughput and rapid capabilities.

摘要

大麻被用于治疗和娱乐目的,其中 delta-9 四氢大麻酚(THC)是其治疗效果的主要目标。随着全球大麻产业和大麻素研究的扩大,更有效和更具成本效益的分析方法来确定大麻素浓度将有利于提高效率和最大化生产力。利用机器学习工具开发基于近红外(NIR)光谱的预测模型,这些模型已经通过准确和敏感的化学分析(如气相色谱(GC)或液相色谱质谱(LCMS))进行了验证,这是至关重要的。以前的大麻素预测模型研究针对的是脱羧大麻素,如 THC,而不是天然存在的前体,四氢大麻酸(THCA),并且使用精细研磨的大麻花序。本研究专注于在收获前建立整个大麻花序中 THCA 浓度的预测模型,采用非破坏性筛选技术,使种植者能够实时快速表征高表现品种的化学型,从而促进杂交工作的有针对性优化。通过使用 NIR 光谱和 LCMS 来创建预测模型,我们可以以 100%的预测准确性区分高 THCA 和甚至比例等级。我们还开发了 THCA 浓度的预测模型, = 0.78,预测误差平均值为 13%。本研究证明了便携式手持 NIR 设备在收获前预测整个大麻样本中 THCA 浓度的可行性,允许更早地评估大麻素谱,从而提高高通量和快速能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a05/11360504/98961d423767/sensors-24-05081-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验