Suppr超能文献

基于机器学习驱动的轨道角动量的光学编码模型。

Optical Encoding Model Based on Orbital Angular Momentum Powered by Machine Learning.

机构信息

Escuela Superior Politécnica del Litoral, ESPOL, Departamento de Física, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 090150, Ecuador.

Facultad de Ciencias Matemáticas y Físicas, Universidad de Guayaquil, Guayaquil 090514, Ecuador.

出版信息

Sensors (Basel). 2023 Mar 2;23(5):2755. doi: 10.3390/s23052755.

Abstract

Based on orbital angular momentum (OAM) properties of Laguerre-Gaussian beams LG(p,ℓ), a robust optical encoding model for efficient data transmission applications is designed. This paper presents an optical encoding model based on an intensity profile generated by a coherent superposition of two OAM-carrying Laguerre-Gaussian modes and a machine learning detection method. In the encoding process, the intensity profile for data encoding is generated based on the selection of and indices, while the decoding process is performed using a support vector machine (SVM) algorithm. Two different decoding models based on an SVM algorithm are tested to verify the robustness of the optical encoding model, finding a BER =10-9 for 10.2 dB of signal-to-noise ratio in one of the SVM models.

摘要

基于拉盖尔-高斯光束 LG(p,ℓ)的轨道角动量 (OAM)特性,设计了一种用于高效数据传输应用的稳健光学编码模型。本文提出了一种基于相干叠加两个携带轨道角动量的拉盖尔-高斯模式的强度分布的光学编码模型,以及一种机器学习检测方法。在编码过程中,根据 和 指数的选择生成用于数据编码的强度分布,而解码过程则使用支持向量机 (SVM)算法完成。测试了两种不同的基于 SVM 算法的解码模型,以验证光学编码模型的稳健性,其中一个 SVM 模型在信噪比为 10.2dB 时达到 BER=10-9。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd51/10007020/8b0d947a5f2b/sensors-23-02755-g0A1.jpg

相似文献

1
Optical Encoding Model Based on Orbital Angular Momentum Powered by Machine Learning.
Sensors (Basel). 2023 Mar 2;23(5):2755. doi: 10.3390/s23052755.
2
Off-axis points encoding/decoding with orbital angular momentum spectrum.
Sci Rep. 2017 Mar 8;7:43757. doi: 10.1038/srep43757.
3
Orbital angular momentum-mediated machine learning for high-accuracy mode-feature encoding.
Light Sci Appl. 2024 Feb 14;13(1):49. doi: 10.1038/s41377-024-01386-5.
4
Weak turbulence effects on different beams carrying orbital angular momentum.
J Opt Soc Am A Opt Image Sci Vis. 2021 Oct 1;38(10):1423-1437. doi: 10.1364/JOSAA.432607.
5
Orbital angular momentum and paraxial propagation characteristics of non-coaxial Laguerre-Gaussian beams.
J Opt Soc Am A Opt Image Sci Vis. 2016 Nov 1;33(11):2137-2143. doi: 10.1364/JOSAA.33.002137.
8
Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor.
Phys Rev Lett. 2019 Aug 16;123(7):070506. doi: 10.1103/PhysRevLett.123.070506.

引用本文的文献

1
Information processing at the speed of light.
Front Optoelectron. 2024 Sep 29;17(1):33. doi: 10.1007/s12200-024-00133-3.

本文引用的文献

1
Experimental kernel-based quantum machine learning in finite feature space.
Sci Rep. 2020 Jul 23;10(1):12356. doi: 10.1038/s41598-020-68911-5.
2
Polarization-Encrypted Orbital Angular Momentum Multiplexed Metasurface Holography.
ACS Nano. 2020 May 26;14(5):5553-5559. doi: 10.1021/acsnano.9b09814. Epub 2020 May 4.
3
Emerging role of machine learning in light-matter interaction.
Light Sci Appl. 2019 Sep 11;8:84. doi: 10.1038/s41377-019-0192-4. eCollection 2019.
4
Demonstration of free-space one-to-many multicasting link from orbital angular momentum encoding.
Opt Lett. 2019 Oct 1;44(19):4753-4756. doi: 10.1364/OL.44.004753.
5
Optical orbital-angular-momentum-multiplexed data transmission under high scattering.
Light Sci Appl. 2019 Mar 6;8:27. doi: 10.1038/s41377-019-0140-3. eCollection 2019.
6
Context encoding enables machine learning-based quantitative photoacoustics.
J Biomed Opt. 2018 May;23(5):1-9. doi: 10.1117/1.JBO.23.5.056008.
7
Laguerre-Gauss and Bessel-Gauss beams propagation through turbulence: analysis of channel efficiency.
Appl Opt. 2016 Dec 20;55(36):10239-10246. doi: 10.1364/AO.55.010239.
8
Encoding information using Laguerre Gaussian modes over free space turbulence media.
Opt Lett. 2016 Jul 1;41(13):3086-9. doi: 10.1364/OL.41.003086.
9
Optical communication beyond orbital angular momentum.
Sci Rep. 2016 Jun 10;6:27674. doi: 10.1038/srep27674.
10
Is there an optimal basis to maximise optical information transfer?
Sci Rep. 2016 Mar 15;6:22821. doi: 10.1038/srep22821.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验