Bartkiewicz Karol, Gneiting Clemens, Černoch Antonín, Jiráková Kateřina, Lemr Karel, Nori Franco
Faculty of Physics, Adam Mickiewicz University, 61-614, Poznan, Poland.
RCPTM, Joint Laboratory of Optics of Palacký University and Institute of Physics of Czech Academy of Sciences, 17. listopadu 12, 771 46, Olomouc, Czech Republic.
Sci Rep. 2020 Jul 23;10(1):12356. doi: 10.1038/s41598-020-68911-5.
We implement an all-optical setup demonstrating kernel-based quantum machine learning for two-dimensional classification problems. In this hybrid approach, kernel evaluations are outsourced to projective measurements on suitably designed quantum states encoding the training data, while the model training is processed on a classical computer. Our two-photon proposal encodes data points in a discrete, eight-dimensional feature Hilbert space. In order to maximize the application range of the deployable kernels, we optimize feature maps towards the resulting kernels' ability to separate points, i.e., their "resolution," under the constraint of finite, fixed Hilbert space dimension. Implementing these kernels, our setup delivers viable decision boundaries for standard nonlinear supervised classification tasks in feature space. We demonstrate such kernel-based quantum machine learning using specialized multiphoton quantum optical circuits. The deployed kernel exhibits exponentially better scaling in the required number of qubits than a direct generalization of kernels described in the literature.
我们实现了一种全光设置,用于演示基于核的量子机器学习解决二维分类问题。在这种混合方法中,核评估被外包给对编码训练数据的适当设计的量子态进行的投影测量,而模型训练则在经典计算机上进行。我们的双光子方案将数据点编码在一个离散的八维特征希尔伯特空间中。为了最大化可部署核的应用范围,我们在有限、固定的希尔伯特空间维度的约束下,朝着所得核分离点的能力,即其“分辨率”优化特征映射。通过实现这些核,我们的设置为特征空间中的标准非线性监督分类任务提供了可行的决策边界。我们使用专门的多光子量子光学电路演示了这种基于核的量子机器学习。与文献中描述的核的直接推广相比,所部署的核在所需量子比特数上表现出指数级更好的扩展性。