Computer Science Department, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania.
Chifor Research SRL, 400068 Cluj-Napoca, Romania.
Sensors (Basel). 2023 Mar 3;23(5):2806. doi: 10.3390/s23052806.
The aim of this study was to evaluate the feasibility of a noninvasive and low-operator-dependent imaging method for carotid-artery-stenosis diagnosis. A previously developed prototype for 3D ultrasound scans based on a standard ultrasound machine and a pose reading sensor was used for this study. Working in a 3D space and processing data using automatic segmentation lowers operator dependency. Additionally, ultrasound imaging is a noninvasive diagnosis method. Artificial intelligence (AI)-based automatic segmentation of the acquired data was performed for the reconstruction and visualization of the scanned area: the carotid artery wall, the carotid artery circulated lumen, soft plaque, and calcified plaque. A qualitative evaluation was conducted via comparing the US reconstruction results with the CT angiographies of healthy and carotid-artery-disease patients. The overall scores for the automated segmentation using the MultiResUNet model for all segmented classes in our study were 0.80 for the IoU and 0.94 for the Dice. The present study demonstrated the potential of the MultiResUNet-based model for 2D-ultrasound-image automated segmentation for atherosclerosis diagnosis purposes. Using 3D ultrasound reconstructions may help operators achieve better spatial orientation and evaluation of segmentation results.
本研究旨在评估一种用于颈动脉狭窄诊断的非侵入性、低操作者依赖性的成像方法的可行性。本研究使用了一种基于标准超声机和姿态读取传感器的 3D 超声扫描的先前开发的原型。在 3D 空间中工作并使用自动分割处理数据可以降低操作者的依赖性。此外,超声成像也是一种非侵入性诊断方法。基于人工智能(AI)的自动分割对采集的数据进行了处理,用于扫描区域的重建和可视化:颈动脉壁、颈动脉循环腔、软斑块和钙化斑块。通过将 US 重建结果与健康和颈动脉疾病患者的 CT 血管造影进行比较,进行了定性评估。在我们的研究中,使用 MultiResUNet 模型对所有分割类别的自动分割的总体得分为 0.80 的 IoU 和 0.94 的 Dice。本研究表明,MultiResUNet 模型在用于动脉粥样硬化诊断目的的 2D 超声图像自动分割方面具有潜力。使用 3D 超声重建可以帮助操作者实现更好的空间定位和分割结果的评估。