文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Cardiovascular Disease Risk Stratification Using Hybrid Deep Learning Paradigm: First of Its Kind on Canadian Trial Data.

作者信息

Bhagawati Mrinalini, Paul Sudip, Mantella Laura, Johri Amer M, Gupta Siddharth, Laird John R, Singh Inder M, Khanna Narendra N, Al-Maini Mustafa, Isenovic Esma R, Tiwari Ekta, Singh Rajesh, Nicolaides Andrew, Saba Luca, Anand Vinod, Suri Jasjit S

机构信息

Department of Biomedical Engineering, North-Eastern Hill University, Shillong 793022, India.

Division of Cardiology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada.

出版信息

Diagnostics (Basel). 2024 Aug 28;14(17):1894. doi: 10.3390/diagnostics14171894.


DOI:10.3390/diagnostics14171894
PMID:39272680
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11393849/
Abstract

BACKGROUND: The risk of cardiovascular disease (CVD) has traditionally been predicted via the assessment of carotid plaques. In the proposed study, AtheroEdge™ 3.0 (AtheroPoint™, Roseville, CA, USA) was designed to demonstrate how well the features obtained from carotid plaques determine the risk of CVD. We hypothesize that hybrid deep learning (HDL) will outperform unidirectional deep learning, bidirectional deep learning, and machine learning (ML) paradigms. METHODOLOGY: 500 people who had undergone targeted carotid B-mode ultrasonography and coronary angiography were included in the proposed study. ML feature selection was carried out using three different methods, namely principal component analysis (PCA) pooling, the chi-square test (CST), and the random forest regression (RFR) test. The unidirectional and bidirectional deep learning models were trained, and then six types of novel HDL-based models were designed for CVD risk stratification. The AtheroEdge™ 3.0 was scientifically validated using and datasets while the reliability and statistical tests were conducted using CST along with -value significance. The performance of AtheroEdge™ 3.0 was evaluated by measuring the -value and area-under-the-curve for both and data. RESULTS: The HDL system showed an improvement of 30.20% (0.954 vs. 0.702) over the ML system using the datasets. The ML feature extraction analysis showed 70% of common features among all three methods. The generalization of AtheroEdge™ 3.0 showed less than 1% (-value < 0.001) difference between and data, complying with regulatory standards. CONCLUSIONS: The hypothesis for AtheroEdge™ 3.0 was scientifically validated, and the model was tested for reliability and stability and is further adaptable clinically.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/c41d055055b8/diagnostics-14-01894-g006a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/f429dac799dc/diagnostics-14-01894-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/4c27c8e159c7/diagnostics-14-01894-g0A2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/81e5cc39c032/diagnostics-14-01894-g0A3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/707ebc43020e/diagnostics-14-01894-g0A4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/946ae80b9e0f/diagnostics-14-01894-g0A5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/02be88cab340/diagnostics-14-01894-g0A6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/299acd26700e/diagnostics-14-01894-g0A7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/448118c5324c/diagnostics-14-01894-g0A8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/d74085d1b877/diagnostics-14-01894-g0A9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/cf14d87ac719/diagnostics-14-01894-g0A10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/dfe4e718618e/diagnostics-14-01894-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/b093920f5e97/diagnostics-14-01894-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/1eb941f8e442/diagnostics-14-01894-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/532a64d5ebcc/diagnostics-14-01894-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/b57d3a226584/diagnostics-14-01894-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/c41d055055b8/diagnostics-14-01894-g006a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/f429dac799dc/diagnostics-14-01894-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/4c27c8e159c7/diagnostics-14-01894-g0A2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/81e5cc39c032/diagnostics-14-01894-g0A3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/707ebc43020e/diagnostics-14-01894-g0A4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/946ae80b9e0f/diagnostics-14-01894-g0A5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/02be88cab340/diagnostics-14-01894-g0A6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/299acd26700e/diagnostics-14-01894-g0A7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/448118c5324c/diagnostics-14-01894-g0A8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/d74085d1b877/diagnostics-14-01894-g0A9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/cf14d87ac719/diagnostics-14-01894-g0A10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/dfe4e718618e/diagnostics-14-01894-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/b093920f5e97/diagnostics-14-01894-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/1eb941f8e442/diagnostics-14-01894-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/532a64d5ebcc/diagnostics-14-01894-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/b57d3a226584/diagnostics-14-01894-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d05/11393849/c41d055055b8/diagnostics-14-01894-g006a.jpg

相似文献

[1]
Cardiovascular Disease Risk Stratification Using Hybrid Deep Learning Paradigm: First of Its Kind on Canadian Trial Data.

Diagnostics (Basel). 2024-8-28

[2]
A hybrid deep learning paradigm for carotid plaque tissue characterization and its validation in multicenter cohorts using a supercomputer framework.

Comput Biol Med. 2022-2

[3]
Automated deep learning-based paradigm for high-risk plaque detection in B-mode common carotid ultrasound scans: an asymptomatic Japanese cohort study.

Int Angiol. 2022-2

[4]
Multiclass machine learning vs. conventional calculators for stroke/CVD risk assessment using carotid plaque predictors with coronary angiography scores as gold standard: a 500 participants study.

Int J Cardiovasc Imaging. 2021-4

[5]
Deep learning artificial intelligence framework for multiclass coronary artery disease prediction using combination of conventional risk factors, carotid ultrasound, and intraplaque neovascularization.

Comput Biol Med. 2022-11

[6]
MultiNet 2.0: A lightweight attention-based deep learning network for stenosis measurement in carotid ultrasound scans and cardiovascular risk assessment.

Comput Med Imaging Graph. 2024-10

[7]
PCA-based polling strategy in machine learning framework for coronary artery disease risk assessment in intravascular ultrasound: A link between carotid and coronary grayscale plaque morphology.

Comput Methods Programs Biomed. 2016-5

[8]
Ultrasound-based internal carotid artery plaque characterization using deep learning paradigm on a supercomputer: a cardiovascular disease/stroke risk assessment system.

Int J Cardiovasc Imaging. 2021-5

[9]
Cardiovascular disease/stroke risk stratification in deep learning framework: a review.

Cardiovasc Diagn Ther. 2023-6-30

[10]
Deep learning approach for cardiovascular disease risk stratification and survival analysis on a Canadian cohort.

Int J Cardiovasc Imaging. 2024-6

引用本文的文献

[1]
Fine tuned CatBoost machine learning approach for early detection of cardiovascular disease through predictive modeling.

Sci Rep. 2025-8-25

[2]
Artificial Intelligence in Cardiovascular Imaging: Current Landscape, Clinical Impact, and Future Directions.

Discoveries (Craiova). 2025-6-30

[3]
Transformer and Attention-Based Architectures for Segmentation of Coronary Arterial Walls in Intravascular Ultrasound: A Narrative Review.

Diagnostics (Basel). 2025-3-26

[4]
Deep Learning-Driven Single-Lead ECG Classification: A Rapid Approach for Comprehensive Cardiac Diagnostics.

Diagnostics (Basel). 2025-2-6

[5]
An Artificial Intelligence-Based Non-Invasive Approach for Cardiovascular Disease Risk Stratification in Obstructive Sleep Apnea Patients: A Narrative Review.

Rev Cardiovasc Med. 2024-12-28

本文引用的文献

[1]
Multi-objective evolutionary optimization for hardware-aware neural network pruning.

Fundam Res. 2022-8-9

[2]
Hybrid Feature Mammogram Analysis: Detecting and Localizing Microcalcifications Combining Gabor, Prewitt, GLCM Features, and Top Hat Filtering Enhanced with CNN Architecture.

Diagnostics (Basel). 2024-8-5

[3]
Unsupervised shape-and-texture-based generative adversarial tuning of pre-trained networks for carotid segmentation from 3D ultrasound images.

Med Phys. 2024-10

[4]
Unlocking new potential of clinical diagnosis with artificial intelligence: Finding new patterns of clinical and lab data.

World J Diabetes. 2024-3-15

[5]
PSE-Net: Channel pruning for Convolutional Neural Networks with parallel-subnets estimator.

Neural Netw. 2024-6

[6]
LSTM algorithm optimization for COVID-19 prediction model.

Heliyon. 2024-2-16

[7]
Artificial intelligence in endocrinology: a comprehensive review.

J Endocrinol Invest. 2024-5

[8]
Lumen segmentation using a Mask R-CNN in carotid arteries with stenotic atherosclerotic plaque.

Ultrasonics. 2024-2

[9]
Embedding channel pruning within the CNN architecture design using a bi-level evolutionary approach.

J Supercomput. 2023-4-25

[10]
Ensemble Deep Learning Derived from Transfer Learning for Classification of COVID-19 Patients on Hybrid Deep-Learning-Based Lung Segmentation: A Data Augmentation and Balancing Framework.

Diagnostics (Basel). 2023-6-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索