Suppr超能文献

基于机器学习的五基因标志物对胰腺癌预后评估能力的研究。

Prognostic assessment capability of a five-gene signature in pancreatic cancer: a machine learning based-study.

机构信息

Center of Hepatobiliary Pancreatic Disease, XuZhou Central Hospital, Jiangsu, People's Republic of China.

Center of Hepatobiliary Pancreatic Disease, The Affiliated Xuzhou Hospital of Medical School of Southeast University, No.199 Jiefang South Road, Xuzhou, Jiangsu, People's Republic of China.

出版信息

BMC Gastroenterol. 2023 Mar 11;23(1):68. doi: 10.1186/s12876-023-02700-y.

Abstract

BACKGROUND

A prognostic assessment method with good sensitivity and specificity plays an important role in the treatment of pancreatic cancer patients. Finding a way to evaluate the prognosis of pancreatic cancer is of great significance for the treatment of pancreatic cancer.

METHODS

In this study, GTEx dataset and TCGA dataset were merged together for differential gene expression analysis. Univariate Cox regression and Lasso regression were used to screen variables in the TCGA dataset. Screening the optimal prognostic assessment model is then performed by gaussian finite mixture model. Receiver operating characteristic (ROC) curves were used as an indicator to assess the predictive ability of the prognostic model, the validation process was performed on the GEO datasets.

RESULTS

Gaussian finite mixture model was then used to build 5-gene signature (ANKRD22, ARNTL2, DSG3, KRT7, PRSS3). Receiver operating characteristic (ROC) curves suggested the 5-gene signature performed well on both the training and validation datasets.

CONCLUSIONS

This 5-gene signature performed well on both our chosen training dataset and validation dataset and provided a new way to predict the prognosis of pancreatic cancer patients.

摘要

背景

一种具有良好灵敏度和特异性的预后评估方法在胰腺癌患者的治疗中起着重要作用。寻找一种评估胰腺癌预后的方法对于胰腺癌的治疗具有重要意义。

方法

本研究将 GTEx 数据集和 TCGA 数据集合并进行差异基因表达分析。使用单因素 Cox 回归和 Lasso 回归在 TCGA 数据集中筛选变量。然后通过高斯有限混合模型筛选最佳预后评估模型。使用接收者操作特征(ROC)曲线作为预测模型预测能力的指标,在 GEO 数据集上进行验证过程。

结果

然后使用高斯有限混合模型构建了 5 个基因特征(ANKRD22、ARNTL2、DSG3、KRT7、PRSS3)。接收者操作特征(ROC)曲线表明,该 5 个基因特征在训练和验证数据集上均表现良好。

结论

该 5 个基因特征在我们选择的训练数据集和验证数据集中均表现良好,为预测胰腺癌患者的预后提供了一种新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7687/10007739/271e9c60bd9a/12876_2023_2700_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验