Suppr超能文献

一种用于预测胰腺癌患者预后的新的7基因生存评分检测方法。

A new 7-gene survival score assay for pancreatic cancer patient prognosis prediction.

作者信息

Luo Lisi, Li Yufang, Huang Chumei, Lin Yujing, Su Yonghui, Cen Hong, Chen Yutong, Peng Siqi, Ren Tianyi, Xie Rongzhi, Zeng Linjuan

机构信息

Department of Abdominal Oncology, The Cancer Center of The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai 519000, Guangdong Province, China.

Department of Gastroenterology, The Seventh Affiliated Hospital of Sun Yat-sen University Shenzhen 518107, China.

出版信息

Am J Cancer Res. 2021 Feb 1;11(2):495-512. eCollection 2021.

Abstract

Gene expression features that are valuable for pancreatic ductal adenocarcinoma (PDAC) prognosis are still largely unknown. We aimed to explore pivotal molecular signatures for PDAC progression and establish an efficient survival score to predict PDAC prognosis. Overall, 163 overlapping genes were identified from three statistical methods, including differentially expressed genes (DEGs), coexpression network analysis (WGCNA), and target genes for miRNAs that were significantly related to PDAC patients' overall survival (OS). Then, according to the optimal value of the cross-validation curve (lambda = 0.031), 7 non-zero coefficients (ARNTL2, DSG3, PTPRR, ANLN, S100A14, ANKRD22, and TSPAN7) were selected to establish a prognostic prediction model of PDAC patients. We further confirmed the expression level of 7 genes using RT-PCR, western blot, and immunohistochemistry staining in PDAC patients' tissues. Our results showed that the ROC curve of the 7-mRNA model indicated good predictive ability for 1- and 2-year OS in three datasets (TCGA: 0.71, 0.69; ICGC: 0.8, 0.74; GEO batch: 0.61, 0.7, respectively). The hazard ratio (HR) of the low-risk group had a similar significant result (TCGA: HR = 0.3723; ICGC: HR = 0.2813; GEO batch: HR = 0.4999; all P < 0.001). Furthermore, Log-rank test results in three cohorts showed that the 7-mRNA assay excellently predicted the prognosis and metastasis, especially in TNM stage I&II subgroups of PDAC. In conclusion, the strong validation of our 7-mRNA signature indicates the promising effectiveness of its clinical application, especially in patients with TNM stages I&II.

摘要

对胰腺导管腺癌(PDAC)预后有价值的基因表达特征在很大程度上仍不清楚。我们旨在探索PDAC进展的关键分子特征,并建立一个有效的生存评分来预测PDAC预后。总体而言,通过三种统计方法鉴定出163个重叠基因,包括差异表达基因(DEGs)、共表达网络分析(WGCNA)以及与PDAC患者总生存期(OS)显著相关的miRNA的靶基因。然后,根据交叉验证曲线的最佳值(lambda = 0.031),选择7个非零系数(ARNTL2、DSG3、PTPRR、ANLN、S100A14、ANKRD22和TSPAN7)来建立PDAC患者的预后预测模型。我们进一步使用RT-PCR、蛋白质免疫印迹和免疫组织化学染色在PDAC患者组织中证实了这7个基因的表达水平。我们的结果表明,7-mRNA模型的ROC曲线在三个数据集中对1年和2年OS显示出良好的预测能力(TCGA:0.71,0.69;ICGC:0.8,0.74;GEO批次:分别为0.61,0.7)。低风险组的风险比(HR)有类似的显著结果(TCGA:HR = 0.3723;ICGC:HR = 0.2813;GEO批次:HR = 0.4999;所有P < 0.001)。此外,三个队列中的对数秩检验结果表明,7-mRNA检测能够出色地预测预后和转移,尤其是在PDAC的TNM I&II期亚组中。总之,我们的7-mRNA特征的有力验证表明其临床应用具有良好的有效性,尤其是在TNM I&II期患者中。

相似文献

引用本文的文献

本文引用的文献

8
Glucose Metabolism in Pancreatic Cancer.胰腺癌中的葡萄糖代谢
Cancers (Basel). 2019 Sep 29;11(10):1460. doi: 10.3390/cancers11101460.
10
The enhancement of glycolysis regulates pancreatic cancer metastasis.糖酵解的增强调控胰腺癌转移。
Cell Mol Life Sci. 2020 Jan;77(2):305-321. doi: 10.1007/s00018-019-03278-z. Epub 2019 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验