Suppr超能文献

基于 EMT 的基因特征增强了对卵巢癌患者的临床认识和预后预测。

An EMT-based gene signature enhances the clinical understanding and prognostic prediction of patients with ovarian cancers.

机构信息

Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, China.

Department of Public Health, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.

出版信息

J Ovarian Res. 2023 Mar 13;16(1):51. doi: 10.1186/s13048-023-01132-2.

Abstract

BACKGROUND

Ovarian cancer (OC) is one of the most common gynecological cancers with malignant metastasis and poor prognosis. Current evidence substantiates that epithelial-mesenchymal transition (EMT) is a critical mechanism that drives OC progression. In this study, we aspire to identify pivotal EMT-related genes (EMTG) in OC development, and establish an EMT gene-based model for prognosis prediction.

METHODS

We constructed the risk score model by screening EMT genes via univariate/LASSO/step multivariate Cox regressions in the OC cohort from TCGA database. The efficacy of the EMTG model was tested in external GEO cohort, and quantified by the nomogram. Moreover, the immune infiltration and chemotherapy sensitivity were analyzed in different risk score groups.

RESULTS

We established a 11-EMTGs risk score model to predict the prognosis of OC patients. Based on the model, OC patients were split into high- and low- risk score groups, and the high-risk score group had an inevitably poor survival. The predictive power of the model was verified by external OC cohort. The nomogram showed that the model was an independent factor for prognosis prediction. Moreover, immune infiltration analysis revealed the immunosuppressive microenvironment in the high-risk score group. Finally, the EMTG model can be used to predict the sensitivity to chemotherapy drugs.

CONCLUSIONS

This study demonstrated that EMTG model was a powerful tool for prognostic prediction of OC patients. Our work not only provide a novel insight into the etiology of OC tumorigenesis, but also can be used in the clinical decisions on OC treatment.

摘要

背景

卵巢癌(OC)是最常见的妇科恶性肿瘤之一,具有恶性转移和预后不良的特点。目前有证据表明上皮-间充质转化(EMT)是驱动 OC 进展的关键机制。在本研究中,我们旨在确定 OC 发展中关键的 EMT 相关基因(EMTG),并建立基于 EMT 基因的预后预测模型。

方法

我们通过单变量/LASSO/逐步多变量 Cox 回归在 TCGA 数据库中的 OC 队列中筛选 EMT 基因,构建风险评分模型。在外部 GEO 队列中测试 EMTG 模型的疗效,并通过列线图进行量化。此外,还在不同风险评分组中分析了免疫浸润和化疗敏感性。

结果

我们建立了一个 11-EMTGs 风险评分模型来预测 OC 患者的预后。基于该模型,OC 患者被分为高风险评分组和低风险评分组,高风险评分组的生存预后必然较差。该模型的预测能力通过外部 OC 队列得到了验证。列线图显示该模型是预后预测的独立因素。此外,免疫浸润分析显示高风险评分组存在免疫抑制微环境。最后,EMTG 模型可用于预测化疗药物的敏感性。

结论

本研究表明 EMTG 模型是预测 OC 患者预后的有力工具。我们的工作不仅为 OC 肿瘤发生的病因提供了新的见解,而且可以用于 OC 治疗的临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bf5/10009944/448f87953355/13048_2023_1132_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验