Suppr超能文献

凝聚介导的具有自进化大孔的超分子水凝胶的细胞相容性形成用于 3D 细胞球状体培养。

Coacervation-Mediated Cytocompatible Formation of Supramolecular Hydrogels with Self-Evolving Macropores for 3D Multicellular Spheroid Culture.

机构信息

Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei, 230601, P. R. China.

Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, P. R. China.

出版信息

Adv Mater. 2023 Jun;35(24):e2300636. doi: 10.1002/adma.202300636. Epub 2023 Apr 27.

Abstract

Coacervation driven liquid-liquid phase separation of biopolymers has aroused considerable attention for diverse applications, especially for the construction of microstructured polymeric materials. Herein, a coacervate-to-hydrogel transition strategy is developed to create macroporous hydrogels (MPH), which are formed via the coacervation process of supramolecular assemblies (SA) built by the host-guest complexation between γ-cyclodextrin and anthracene dimer. The weak and reversible supramolecular crosslinks endow the SA with liquid-like rheological properties, which facilitate the formation of SA-derived macroporous coacervates and the subsequent transition to MPH (pore size ≈ 100 µm). The excellent structural dynamics (derived from SA) and the cytocompatible void-forming process of MPH can better accommodate the dramatic volumetric expansion associated with colony growth of encapsulated multicellular spheroids compared with the non-porous static hydrogel with similar initial mechanical properties. The findings of this work not only provide valuable guidance to the design of biomaterials with self-evolving structures but also present a promising strategy for 3D multicellular spheroid culture and other diverse biomedical applications.

摘要

生物聚合物的凝聚驱动的液-液相分离引起了人们的广泛关注,特别是在微结构化聚合物材料的构建方面。在此,开发了一种凝聚相到水凝胶的转变策略来制备大孔水凝胶(MPH),其通过超分子组装(SA)的凝聚过程形成,超分子组装由γ-环糊精和蒽二聚体之间的主客体络合构建。弱且可逆的超分子交联赋予 SA 类液态流变性能,这有利于形成源自 SA 的大孔凝聚相以及随后向 MPH 的转变(孔径≈100µm)。与具有相似初始机械性能的非多孔静态水凝胶相比,MPH 的优异结构动力学(源自 SA)和细胞相容性的空隙形成过程可以更好地适应与包封的多细胞球体的菌落生长相关的剧烈体积膨胀。这项工作的发现不仅为具有自演变结构的生物材料的设计提供了有价值的指导,而且为 3D 多细胞球体培养和其他多样化的生物医学应用提供了一种有前途的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验