Omar Jasmin, Ponsford Daniel, Dreiss Cécile A, Lee Tung-Chun, Loh Xian Jun
Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK.
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore.
Chem Asian J. 2022 May 2;17(9):e202200081. doi: 10.1002/asia.202200081. Epub 2022 Mar 19.
Self-assembly of supramolecular hydrogels is driven by dynamic, non-covalent interactions between molecules. Considerable research effort has been exerted to fabricate and optimise supramolecular hydrogels that display shear-thinning, self-healing, and reversibility, in order to develop materials for biomedical applications. This review provides a detailed overview of the chemistry behind the dynamic physicochemical interactions that sustain hydrogel formation (hydrogen bonding, hydrophobic interactions, ionic interactions, metal-ligand coordination, and host-guest interactions). Novel design strategies and methodologies to create supramolecular hydrogels are highlighted, which offer promise for a wide range of applications, specifically drug delivery, wound healing, tissue engineering and 3D bioprinting. To conclude, future prospects are briefly discussed, and consideration given to the steps required to ultimately bring these biomaterials into clinical settings.
超分子水凝胶的自组装是由分子间动态的非共价相互作用驱动的。为了开发用于生物医学应用的材料,人们已经付出了相当多的研究努力来制备和优化具有剪切变稀、自愈合和可逆性的超分子水凝胶。本综述详细概述了维持水凝胶形成的动态物理化学相互作用背后的化学原理(氢键、疏水相互作用、离子相互作用、金属-配体配位和主客体相互作用)。重点介绍了创建超分子水凝胶的新型设计策略和方法,这些策略和方法为广泛的应用带来了希望,特别是药物递送、伤口愈合、组织工程和3D生物打印。最后,简要讨论了未来的前景,并考虑了最终将这些生物材料应用于临床所需的步骤。