Medical College, Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, College of Computer Science and Technology, State Key Laboratory of Public Big Data, Guizhou University, Guiyang, China.
Univ. Lyon, INSA Lyon, CNRS, Inserm, CREATIS UMR 5220, U1206, F-69621, Lyon, France.
NMR Biomed. 2023 Aug;36(8):e4919. doi: 10.1002/nbm.4919. Epub 2023 Apr 11.
Spatial resolution of diffusion tensor images is usually compromised to accelerate the acquisitions, and the state-of-the-art (SOTA) image super-resolution (SR) reconstruction methods are commonly based on supervised learning models. Considering that matched low-resolution (LR) and high-resolution (HR) diffusion-weighted (DW) image pairs are not readily available, we propose a semi-supervised DW image SR reconstruction method based on multiple references (MRSR) extracted from other subjects. In MRSR, the prior information of multiple HR reference images is migrated into a residual-like network to assist SR reconstruction of DW images, and a CycleGAN-based semi-supervised strategy is used to train the network with 30% matched and 70% unmatched LR-HR image pairs. We evaluate the performance of the MRSR by comparing against SOTA methods on an HCP dataset in terms of the quality of reconstructed DW images and diffusion metrics. MRSR achieves the best performance, with the mean PSNR/SSIM of DW images being improved by at least 14.3%/28.8% and 1%/1.4% respectively relative to SOTA unsupervised and supervised learning methods, and with the fiber orientations deviating from the ground truth by about 6.28° on average, the RMSEs of fractional anisotropy, mean diffusivity, axial diffusivity and radial diffusivity being 3.0%, 4.6%, 5.7% and 4.5% respectively relative to the ground truth. We validate the effectiveness of the proposed network structure, multiple-reference and CycleGAN-based semi-supervised learning strategies for SR reconstruction of diffusion tensor images through the ablation studies. The proposed method allows us to achieve SR reconstruction for diffusion tensor images with a limited number of matched image pairs.
扩散张量图像的空间分辨率通常会受到采集速度的影响而妥协,而最先进的(SOTA)图像超分辨率(SR)重建方法通常基于监督学习模型。考虑到匹配的低分辨率(LR)和高分辨率(HR)扩散加权(DW)图像对不容易获得,我们提出了一种基于从其他受试者提取的多个参考(MRSR)的半监督 DW 图像 SR 重建方法。在 MRSR 中,多个 HR 参考图像的先验信息被迁移到一个残差网络中,以协助 DW 图像的 SR 重建,并且使用基于 CycleGAN 的半监督策略来训练网络,其中包括 30%的匹配和 70%的不匹配的 LR-HR 图像对。我们通过在 HCP 数据集上与 SOTA 方法进行比较,根据重建 DW 图像的质量和扩散指标来评估 MRSR 的性能。MRSR 取得了最佳性能,与 SOTA 无监督和监督学习方法相比,DW 图像的平均 PSNR/SSIM 分别提高了至少 14.3%/28.8%和 1%/1.4%,纤维方向相对于真实值的平均偏差约为 6.28°,各向异性分数、平均扩散系数、轴向扩散系数和径向扩散系数的 RMSE 分别为 3.0%、4.6%、5.7%和 4.5%。我们通过消融研究验证了所提出的网络结构、多参考和基于 CycleGAN 的半监督学习策略对扩散张量图像 SR 重建的有效性。该方法允许我们在有限数量的匹配图像对的情况下实现扩散张量图像的 SR 重建。