Genentech Inc., South San Francisco, California, USA.
Clin Transl Sci. 2023 Jul;16(7):1134-1148. doi: 10.1111/cts.13501. Epub 2023 Mar 23.
Phase I oncology clinical trials often comprise a limited number of patients representing different disease subtypes who are divided into cohorts receiving treatment(s) at different dosing levels and schedules. Here, we leverage a previously developed quantitative systems pharmacology model of the anti-CD20/CD3 T-cell engaging bispecific antibody, mosunetuzumab, to account for different dosing regimens and patient heterogeneity in the phase I study to inform clinical dose/exposure-response relationships and to identify biological determinants of clinical response. We developed a novel workflow to generate digital twins for each patient, which together form a virtual population (VPOP) that represented variability in biological, pharmacological, and tumor-related parameters from the phase I trial. Simulations based on the VPOP predict that an increase in mosunetuzumab exposure increases the proportion of digital twins with at least a 50% reduction in tumor size by day 42. Simulations also predict a left-shift of the exposure-response in patients diagnosed with indolent compared to aggressive non-Hodgkin's lymphoma (NHL) subtype; this increased sensitivity in indolent NHL was attributed to the lower inferred values of tumor proliferation rate and baseline T-cell infiltration in the corresponding digital twins. Notably, the inferred digital twin parameters from clinical responders and nonresponders show that the potential biological difference that can influence response include tumor parameters (tumor size, proliferation rate, and baseline T-cell infiltration) and parameters defining the effect of mosunetuzumab on T-cell activation and B-cell killing. Finally, the model simulations suggest intratumor expansion of pre-existing T-cells, rather than an influx of systemically expanded T-cells, underlies the antitumor activity of mosunetuzumab.
I 期肿瘤临床试验通常包含数量有限的患者,这些患者代表不同的疾病亚型,他们被分为不同剂量水平和方案接受治疗的队列。在这里,我们利用先前开发的抗 CD20/CD3 T 细胞结合双特异性抗体 mosunetuzumab 的定量系统药理学模型,解释 I 期研究中不同的剂量方案和患者异质性,以告知临床剂量/暴露-反应关系,并确定临床反应的生物学决定因素。我们开发了一种新的工作流程,为每个患者生成数字双胞胎,这些数字双胞胎共同构成了一个虚拟人群(VPOP),代表了来自 I 期试验的生物学、药理学和肿瘤相关参数的变异性。基于 VPOP 的模拟预测,mosunetuzumab 暴露的增加会增加数字双胞胎中至少有 50%肿瘤体积减少的比例在第 42 天。模拟还预测,与侵袭性非霍奇金淋巴瘤(NHL)亚型相比,患有惰性 NHL 的患者的暴露-反应会向左偏移;惰性 NHL 的这种敏感性增加归因于相应数字双胞胎中肿瘤增殖率和基线 T 细胞浸润的推断值较低。值得注意的是,来自临床应答者和无应答者的推断数字双胞胎参数表明,可能影响反应的潜在生物学差异包括肿瘤参数(肿瘤大小、增殖率和基线 T 细胞浸润)以及定义 mosunetuzumab 对 T 细胞激活和 B 细胞杀伤的影响的参数。最后,模型模拟表明,mosunetuzumab 的抗肿瘤活性是由肿瘤内预先存在的 T 细胞的扩张而不是系统扩张的 T 细胞的流入所驱动的。