文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Whole-Body Physiologically Based Pharmacokinetic Modeling Framework for Tissue Target Engagement of CD3 Bispecific Antibodies.

作者信息

Susilo Monica E, Schaller Stephan, Jiménez-Franco Luis David, Kulesza Alexander, de Witte Wilhelmus E A, Chen Shang-Chiung, Boswell C Andrew, Mandikian Danielle, Li Chi-Chung

机构信息

Genentech, Inc., South San Francisco, CA 94080, USA.

ESQlabs GmbH, Am Sportplatz 7, 26683 Saterland, Germany.

出版信息

Pharmaceutics. 2025 Apr 9;17(4):500. doi: 10.3390/pharmaceutics17040500.


DOI:10.3390/pharmaceutics17040500
PMID:40284495
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12030717/
Abstract

: T-cell-engaging bispecific (TCB) antibodies represent a promising therapy that utilizes T-cells to eliminate cancer cells independently of the major histocompatibility complex. Despite their success in hematologic cancers, challenges such as cytokine release syndrome (CRS), off-tumor toxicity, and resistance limit their efficacy in solid tumors. Optimizing biodistribution is key to overcoming these challenges. : A physiologically based pharmacokinetic (PBPK) model was developed that incorporates T-cell transmigration, retention, receptor binding, receptor turnover, and cellular engagement. Preclinical biodistribution data were modeled using two TCB formats: one lacking tumor target binding and another with target arm binding, each with varying CD3 affinities in a transgenic tumor-bearing mouse model. : The PBPK model successfully described the distribution of activated T-cells and various TCB formats. It accurately predicted preclinical biodistribution patterns, demonstrating that higher CD3 affinity leads to faster clearance from the blood and increased accumulation in T-cell-rich organs, often reducing tumor exposure. Simulations of HER2-CD3 TCB doses (0.1 µg to 100 mg) revealed monotonic increases in synapse AUC within the tumor. A bell-shaped dose-Cmax relationship for synapse formation was observed, and Tmax was delayed at higher doses. Blood PK was a reasonable surrogate for tumor synapse at low doses but less predictive at higher doses. : We developed a whole-body PBPK model to simulate the biodistribution of T-cells and TCB molecules. The insights from this model provide a comprehensive understanding of the factors affecting PK, synapse formation, and TCB activity, aiding in dose optimization and the design of effective therapeutic strategies.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8a/12030717/9a13d03447c0/pharmaceutics-17-00500-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8a/12030717/aa435aeb0269/pharmaceutics-17-00500-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8a/12030717/d109c8ad8f85/pharmaceutics-17-00500-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8a/12030717/c902751fd483/pharmaceutics-17-00500-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8a/12030717/330e25592318/pharmaceutics-17-00500-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8a/12030717/8486e4766c9c/pharmaceutics-17-00500-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8a/12030717/ddb90cfdd7f7/pharmaceutics-17-00500-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8a/12030717/9a13d03447c0/pharmaceutics-17-00500-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8a/12030717/aa435aeb0269/pharmaceutics-17-00500-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8a/12030717/d109c8ad8f85/pharmaceutics-17-00500-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8a/12030717/c902751fd483/pharmaceutics-17-00500-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8a/12030717/330e25592318/pharmaceutics-17-00500-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8a/12030717/8486e4766c9c/pharmaceutics-17-00500-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8a/12030717/ddb90cfdd7f7/pharmaceutics-17-00500-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8a/12030717/9a13d03447c0/pharmaceutics-17-00500-g007.jpg

相似文献

[1]
Whole-Body Physiologically Based Pharmacokinetic Modeling Framework for Tissue Target Engagement of CD3 Bispecific Antibodies.

Pharmaceutics. 2025-4-9

[2]
JAK and mTOR inhibitors prevent cytokine release while retaining T cell bispecific antibody in vivo efficacy.

J Immunother Cancer. 2022-1

[3]
Src/lck inhibitor dasatinib reversibly switches off cytokine release and T cell cytotoxicity following stimulation with T cell bispecific antibodies.

J Immunother Cancer. 2021-7

[4]
Characterization of a novel bispecific antibody targeting tissue factor-positive tumors with T cell engagement.

Acta Pharm Sin B. 2022-4

[5]
Phase 1, first-in-human study of TYRP1-TCB (RO7293583), a novel TYRP1-targeting CD3 T-cell engager, in metastatic melanoma: active drug monitoring to assess the impact of immune response on drug exposure.

Front Oncol. 2024-3-21

[6]
Relative Target Affinities of T-Cell-Dependent Bispecific Antibodies Determine Biodistribution in a Solid Tumor Mouse Model.

Mol Cancer Ther. 2018-1-16

[7]
A Probody T Cell-Engaging Bispecific Antibody Targeting EGFR and CD3 Inhibits Colon Cancer Growth with Limited Toxicity.

Cancer Res. 2022-11-15

[8]
Leveraging a physiologically-based quantitative translational modeling platform for designing B cell maturation antigen-targeting bispecific T cell engagers for treatment of multiple myeloma.

PLoS Comput Biol. 2022-7

[9]
Preclinical InVivo Data Integrated in a Modeling Network Informs a Refined Clinical Strategy for a CD3 T-Cell Bispecific in Combination with Anti-PD-L1.

AAPS J. 2022-10-7

[10]
A Novel Carcinoembryonic Antigen T-Cell Bispecific Antibody (CEA TCB) for the Treatment of Solid Tumors.

Clin Cancer Res. 2016-2-9

本文引用的文献

[1]
Clinical Pharmacology of Cytokine Release Syndrome with T-Cell-Engaging Bispecific Antibodies: Current Insights and Drug Development Strategies.

Clin Cancer Res. 2025-1-17

[2]
Local depletion of large molecule drugs due to target binding in tissue interstitial space.

CPT Pharmacometrics Syst Pharmacol. 2024-12

[3]
A Novel Step-Up Dosage Regimen for Enhancing the Benefit-to-Risk Ratio of Mosunetuzumab in Relapsed or Refractory Follicular Lymphoma.

Clin Pharmacol Ther. 2025-2

[4]
Current landscape of CD3 bispecific antibodies in hematologic malignancies.

Trends Cancer. 2024-8

[5]
Mathematical modeling of endogenous and exogenously administered T cell recirculation in mouse and its application to pharmacokinetic studies of cell therapies.

Front Immunol. 2024

[6]
Optimizing Clinical Translation of Bispecific T-cell Engagers through Context Unification with a Quantitative Systems Pharmacology Model.

Clin Pharmacol Ther. 2024-8

[7]
Overcoming cold tumors: a combination strategy of immune checkpoint inhibitors.

Front Immunol. 2024

[8]
A Mechanistic Physiologically-Based Pharmacokinetic Platform Model to Guide Adult and Pediatric Intravenous and Subcutaneous Dosing for Bispecific T Cell Engagers.

Clin Pharmacol Ther. 2024-3

[9]
Population Pharmacokinetics and Exposure-Response with Teclistamab in Patients With Relapsed/Refractory Multiple Myeloma: Results From MajesTEC-1.

Target Oncol. 2023-9

[10]
Selection of bispecific antibodies with optimal developability using FcRn‑Ph‑HPLC as an optimized FcRn affinity chromatography method.

MAbs. 2023

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索