Susilo Monica E, Schaller Stephan, Jiménez-Franco Luis David, Kulesza Alexander, de Witte Wilhelmus E A, Chen Shang-Chiung, Boswell C Andrew, Mandikian Danielle, Li Chi-Chung
Genentech, Inc., South San Francisco, CA 94080, USA.
ESQlabs GmbH, Am Sportplatz 7, 26683 Saterland, Germany.
Pharmaceutics. 2025 Apr 9;17(4):500. doi: 10.3390/pharmaceutics17040500.
: T-cell-engaging bispecific (TCB) antibodies represent a promising therapy that utilizes T-cells to eliminate cancer cells independently of the major histocompatibility complex. Despite their success in hematologic cancers, challenges such as cytokine release syndrome (CRS), off-tumor toxicity, and resistance limit their efficacy in solid tumors. Optimizing biodistribution is key to overcoming these challenges. : A physiologically based pharmacokinetic (PBPK) model was developed that incorporates T-cell transmigration, retention, receptor binding, receptor turnover, and cellular engagement. Preclinical biodistribution data were modeled using two TCB formats: one lacking tumor target binding and another with target arm binding, each with varying CD3 affinities in a transgenic tumor-bearing mouse model. : The PBPK model successfully described the distribution of activated T-cells and various TCB formats. It accurately predicted preclinical biodistribution patterns, demonstrating that higher CD3 affinity leads to faster clearance from the blood and increased accumulation in T-cell-rich organs, often reducing tumor exposure. Simulations of HER2-CD3 TCB doses (0.1 µg to 100 mg) revealed monotonic increases in synapse AUC within the tumor. A bell-shaped dose-Cmax relationship for synapse formation was observed, and Tmax was delayed at higher doses. Blood PK was a reasonable surrogate for tumor synapse at low doses but less predictive at higher doses. : We developed a whole-body PBPK model to simulate the biodistribution of T-cells and TCB molecules. The insights from this model provide a comprehensive understanding of the factors affecting PK, synapse formation, and TCB activity, aiding in dose optimization and the design of effective therapeutic strategies.
T细胞接合双特异性(TCB)抗体是一种很有前景的疗法,它利用T细胞独立于主要组织相容性复合体来消除癌细胞。尽管它们在血液系统癌症中取得了成功,但诸如细胞因子释放综合征(CRS)、肿瘤外毒性和耐药性等挑战限制了它们在实体瘤中的疗效。优化生物分布是克服这些挑战的关键。
开发了一种基于生理的药代动力学(PBPK)模型,该模型纳入了T细胞迁移、滞留、受体结合、受体周转和细胞接合。在转基因荷瘤小鼠模型中,使用两种TCB形式对临床前生物分布数据进行建模:一种缺乏肿瘤靶点结合,另一种具有靶点臂结合,每种形式具有不同的CD3亲和力。
PBPK模型成功地描述了活化T细胞和各种TCB形式的分布。它准确地预测了临床前生物分布模式,表明较高的CD3亲和力导致从血液中更快清除,并增加在富含T细胞的器官中的积累,通常会减少肿瘤暴露。HER2-CD3 TCB剂量(0.1μg至100mg)的模拟显示肿瘤内突触AUC呈单调增加。观察到突触形成的剂量-Cmax关系呈钟形,且在较高剂量下Tmax延迟。低剂量时血液药代动力学是肿瘤突触的合理替代指标,但在高剂量时预测性较差。
我们开发了一个全身PBPK模型来模拟T细胞和TCB分子的生物分布。该模型的见解提供了对影响药代动力学、突触形成和TCB活性的因素的全面理解,有助于剂量优化和有效治疗策略的设计。