Suppr超能文献

展开式 DOT:一种用于漫射光学层析成像的可解释深度网络。

Unrolled-DOT: an interpretable deep network for diffuse optical tomography.

机构信息

Rice University, Department of Electrical and Computer Engineering, Houston, Texas, United States.

Columbia University, Department of Biomedical Engineering, New York, New York, United States.

出版信息

J Biomed Opt. 2023 Mar;28(3):036002. doi: 10.1117/1.JBO.28.3.036002. Epub 2023 Mar 8.

Abstract

SIGNIFICANCE

Imaging through scattering media is critical in many biomedical imaging applications, such as breast tumor detection and functional neuroimaging. Time-of-flight diffuse optical tomography (ToF-DOT) is one of the most promising methods for high-resolution imaging through scattering media. ToF-DOT and many traditional DOT methods require an image reconstruction algorithm. Unfortunately, this algorithm often requires long computational runtimes and may produce lower quality reconstructions in the presence of model mismatch or improper hyperparameter tuning.

AIM

We used a data-driven unrolled network as our ToF-DOT inverse solver. The unrolled network is faster than traditional inverse solvers and achieves higher reconstruction quality by accounting for model mismatch.

APPROACH

Our model "Unrolled-DOT" uses the learned iterative shrinkage thresholding algorithm. In addition, we incorporate a refinement U-Net and Visual Geometry Group (VGG) perceptual loss to further increase the reconstruction quality. We trained and tested our model on simulated and real-world data and benchmarked against physics-based and learning-based inverse solvers.

RESULTS

In experiments on real-world data, Unrolled-DOT outperformed learning-based algorithms and achieved over 10× reduction in runtime and mean-squared error, compared to traditional physics-based solvers.

CONCLUSION

We demonstrated a learning-based ToF-DOT inverse solver that achieves state-of-the-art performance in speed and reconstruction quality, which can aid in future applications for noninvasive biomedical imaging.

摘要

意义

在许多生物医学成像应用中,如乳腺癌检测和功能神经成像,通过散射介质进行成像至关重要。飞行时间漫射光学断层扫描(ToF-DOT)是通过散射介质进行高分辨率成像的最有前途的方法之一。ToF-DOT 和许多传统的 DOT 方法都需要图像重建算法。不幸的是,该算法通常需要较长的计算运行时间,并且在存在模型失配或不当超参数调整的情况下,可能会产生较低质量的重建。

目的

我们使用数据驱动的展开网络作为 ToF-DOT 逆求解器。与传统的逆求解器相比,展开网络速度更快,并通过考虑模型失配来实现更高的重建质量。

方法

我们的模型“Unrolled-DOT”使用了学习的迭代收缩阈值算法。此外,我们还结合了一个细化的 U-Net 和视觉几何组(VGG)感知损失,以进一步提高重建质量。我们在模拟和真实世界的数据上训练和测试了我们的模型,并与基于物理和基于学习的逆求解器进行了基准测试。

结果

在真实世界数据的实验中,Unrolled-DOT 优于基于学习的算法,与传统的基于物理的求解器相比,运行时间和均方误差减少了 10 倍以上。

结论

我们展示了一种基于学习的 ToF-DOT 逆求解器,在速度和重建质量方面达到了最新水平,这有助于未来在非侵入性生物医学成像中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba11/9995139/7785889c31b4/JBO-028-036002-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验