Ramanoël Stephen, Durteste Marion, Delaux Alexandre, de Saint Aubert Jean-Baptiste, Arleo Angelo
Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
Université Côte d'Azur, LAMHESS, Nice, France.
Aging Brain. 2022 Feb 15;2:100034. doi: 10.1016/j.nbas.2022.100034. eCollection 2022.
Aging leads to a complex pattern of structural and functional changes, gradually affecting sensorimotor, perceptual, and cognitive processes. These multiscale changes can hinder older adults' interaction with their environment, progressively reducing their autonomy in performing tasks relevant to everyday life. Autonomy loss can further be aggravated by the onset and progression of neurodegenerative disorders (e.g., age-related macular degeneration at the sensory input level; and Alzheimer's disease at the cognitive level). In this context, spatial cognition offers a representative case of high-level brain function that involves multimodal sensory processing, postural control, locomotion, spatial orientation, and wayfinding capabilities. Hence, studying spatial behavior and its neural bases can help identify early markers of pathogenic age-related processes. Until now, the neural correlates of spatial cognition have mostly been studied in static conditions thereby disregarding perceptual (other than visual) and motor aspects of natural navigation. In this review, we first demonstrate how visuo-motor integration and the allocation of cognitive resources during locomotion lie at the heart of real-world spatial navigation. Second, we present how technological advances such as immersive virtual reality and mobile neuroimaging solutions can enable researchers to explore the interplay between perception and action. Finally, we argue that the future of brain aging research in spatial navigation demands a widespread shift toward the use of naturalistic, ecologically valid experimental paradigms to address the challenges of mobility and autonomy decline across the lifespan.
衰老会导致复杂的结构和功能变化模式,逐渐影响感觉运动、感知和认知过程。这些多尺度变化会阻碍老年人与环境的互动,逐渐降低他们在执行与日常生活相关任务时的自主性。神经退行性疾病(例如,感觉输入层面的年龄相关性黄斑变性;认知层面的阿尔茨海默病)的发生和进展会进一步加剧自主性的丧失。在这种背景下,空间认知提供了一个高级脑功能的典型案例,它涉及多模态感觉处理、姿势控制、运动、空间定向和寻路能力。因此,研究空间行为及其神经基础有助于识别与年龄相关的致病过程的早期标志物。到目前为止,空间认知的神经关联大多是在静态条件下进行研究的,从而忽略了自然导航中的感知(视觉以外的)和运动方面。在这篇综述中,我们首先展示视觉运动整合以及运动过程中认知资源的分配如何是现实世界空间导航的核心。其次,我们介绍沉浸式虚拟现实和移动神经成像解决方案等技术进步如何使研究人员能够探索感知与行动之间的相互作用。最后,我们认为空间导航中脑衰老研究的未来需要广泛转向使用自然主义、生态有效的实验范式,以应对整个生命周期中移动性和自主性下降的挑战。