Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.
Institute of Psychology and Ergonomics, Technische Universität Berlin, Berlin, Germany.
Eur J Neurosci. 2021 Dec;54(12):8256-8282. doi: 10.1111/ejn.15190. Epub 2021 May 4.
Coupling behavioral measures and brain imaging in naturalistic, ecological conditions is key to comprehend the neural bases of spatial navigation. This highly integrative function encompasses sensorimotor, cognitive, and executive processes that jointly mediate active exploration and spatial learning. However, most neuroimaging approaches in humans are based on static, motion-constrained paradigms and they do not account for all these processes, in particular multisensory integration. Following the Mobile Brain/Body Imaging approach, we aimed to explore the cortical correlates of landmark-based navigation in actively behaving young adults, solving a Y-maze task in immersive virtual reality. EEG analysis identified a set of brain areas matching state-of-the-art brain imaging literature of landmark-based navigation. Spatial behavior in mobile conditions additionally involved sensorimotor areas related to motor execution and proprioception usually overlooked in static fMRI paradigms. Expectedly, we located a cortical source in or near the posterior cingulate, in line with the engagement of the retrosplenial complex in spatial reorientation. Consistent with its role in visuo-spatial processing and coding, we observed an alpha-power desynchronization while participants gathered visual information. We also hypothesized behavior-dependent modulations of the cortical signal during navigation. Despite finding few differences between the encoding and retrieval phases of the task, we identified transient time-frequency patterns attributed, for instance, to attentional demand, as reflected in the alpha/gamma range, or memory workload in the delta/theta range. We confirmed that combining mobile high-density EEG and biometric measures can help unravel the brain structures and the neural modulations subtending ecological landmark-based navigation.
将行为测量与自然、生态条件下的大脑成像相结合是理解空间导航神经基础的关键。这一高度综合的功能包括感觉运动、认知和执行过程,共同介导主动探索和空间学习。然而,人类的大多数神经影像学方法都是基于静态、运动受限的范式,它们不能涵盖所有这些过程,特别是多感觉整合。我们遵循移动大脑/身体成像方法,旨在探索主动行为的年轻成年人基于地标导航的大脑皮层相关性,在沉浸式虚拟现实中解决 Y 型迷宫任务。EEG 分析确定了一组与基于地标导航的最新脑成像文献相匹配的大脑区域。在移动条件下的空间行为还涉及与运动执行和本体感觉相关的感觉运动区域,这些区域通常在静态 fMRI 范式中被忽视。正如预期的那样,我们在后部扣带或附近找到了一个皮质源,这与空间再定向中后扣带回复合体的参与一致。与它在视空间处理和编码中的作用一致,我们观察到参与者收集视觉信息时 alpha 功率去同步。我们还假设在导航过程中存在行为依赖性的皮质信号调制。尽管我们在任务的编码和检索阶段发现了很少的差异,但我们确定了瞬态时频模式,归因于注意力需求,例如,在 alpha/gamma 范围内,或在 delta/theta 范围内的记忆工作量。我们证实,结合移动高密度 EEG 和生物计量测量可以帮助揭示生态地标导航的大脑结构和神经调节。