Urdaneta-Páez Verónica, Hamchand Randy, Anthony Karen, Crawford Jason, Sutherland Alan G, Kazmierczak Barbara I
bioRxiv. 2023 Feb 28:2023.02.27.530370. doi: 10.1101/2023.02.27.530370.
is intrinsically resistant to many classes of antibiotics, reflecting the restrictive nature of its outer membrane and the action of its numerous efflux systems. However, the dynamics of compound uptake, retention and efflux in this bacterium remain incompletely understood. Here, we exploited the sensor capabilities of a Z-nucleotide sensing riboswitch to create an experimental system able to identify physicochemical and structural properties of compounds that permeate the bacterial cell, avoid efflux, and perturb the folate cycle or purine synthesis. In a first step, a collection of structurally diverse compounds enriched in antifolate drugs was screened for ZTP riboswitch reporter activity in efflux-deficient , allowing us to identify compounds that entered the cell and disrupted the folate pathway. These initial hits were then rescreened using isogenic efflux-proficient bacteria, allowing us to separate efflux substrates from efflux avoiders. We confirmed this categorization by measuring intracellular levels of select compounds in the efflux-deficient and - proficient strain using high resolution LC-MS. This simple yet powerful method, optimized for high throughput screening, enables the discovery of numerous permeable compounds that avoid efflux and paves the way for further refinement of the physicochemical and structural rules governing efflux in this multi-drug resistant Gram-negative pathogen.
Treatment of infections has become increasingly challenging. The development of novel antibiotics against this multi-drug resistant bacterium is a priority, but many drug candidates never achieve effective concentrations in the bacterial cell due due to its highly restrictive outer membrane and the action of multiple efflux pumps. Here, we develop a robust and simple reporter system in to screen chemical libraries and identify compounds that either enter the cell and remain inside, or enter the cell and are exported by efflux systems. This approach enables developing rules of compound uptake and retention in that will lead to more rational design of novel antibiotics.
对多种抗生素具有内在抗性,这反映了其外膜的限制性本质及其众多外排系统的作用。然而,该细菌中化合物摄取、保留和外排的动态过程仍未完全了解。在此,我们利用Z-核苷酸传感核糖开关的传感能力创建了一个实验系统,该系统能够识别渗透细菌细胞、避免外排并干扰叶酸循环或嘌呤合成的化合物的物理化学和结构特性。第一步,在缺乏外排功能的菌株中筛选富含抗叶酸药物的结构多样的化合物库,以检测ZTP核糖开关报告活性,从而使我们能够识别进入细胞并破坏叶酸途径的化合物。然后使用同基因外排功能正常的细菌对这些初步筛选出的化合物进行重新筛选,使我们能够将外排底物与外排避免剂区分开来。我们通过使用高分辨率液相色谱-质谱法测量外排缺陷型和外排功能正常型菌株中选定化合物的细胞内水平来证实这种分类。这种简单而强大的方法经过优化可用于高通量筛选,能够发现众多可渗透且避免外排的化合物,并为进一步完善这种多重耐药革兰氏阴性病原体中外排的物理化学和结构规则铺平了道路。
治疗感染变得越来越具有挑战性。开发针对这种多重耐药细菌的新型抗生素是当务之急,但由于其高度限制性的外膜和多个外排泵的作用,许多候选药物在细菌细胞中从未达到有效浓度。在此,我们在中开发了一种强大且简单的报告系统,以筛选化学文库并识别进入细胞并留在细胞内或进入细胞并被外排系统排出的化合物。这种方法能够制定化合物在中的摄取和保留规则,这将导致新型抗生素的设计更加合理。