Department of Medicine, Section of Infectious Diseases, Yale University, New Haven, Connecticut, USA.
Department of Chemistry, Yale University, New Haven, Connecticut, USA.
mSphere. 2023 Apr 20;8(2):e0006923. doi: 10.1128/msphere.00069-23. Epub 2023 Mar 22.
Pseudomonas aeruginosa is intrinsically resistant to many classes of antibiotics, reflecting the restrictive nature of its outer membrane and the action of its numerous efflux systems. However, the dynamics of compound uptake, retention, and efflux in this bacterium remain incompletely understood. Here, we exploited the sensor capabilities of a Z-nucleotide-sensing riboswitch to create an experimental system able to identify physicochemical and structural properties of compounds that permeate the bacterial cell, avoid efflux, and perturb the folate cycle or purine synthesis. In the first step, a collection of structurally diverse compounds enriched in antifolate drugs was screened for ZTP (5-aminoimidazole-4-carboxamide riboside 5'-triphosphate) riboswitch reporter activity in efflux-deficient P. aeruginosa, allowing us to identify compounds that entered the cell and disrupted the folate pathway. These initial hits were then rescreened using isogenic efflux-proficient bacteria, allowing us to separate efflux substrates from efflux avoiders. We confirmed this categorization by measuring intracellular levels of select compounds in the efflux-deficient and -proficient strain using high-resolution liquid chromatography-mass spectrometry (LC-MS). This simple yet powerful method, optimized for high-throughput screening, enables the discovery of numerous permeable compounds that avoid efflux and paves the way for further refinement of the physicochemical and structural rules governing efflux in this multidrug-resistant Gram-negative pathogen. Treatment of Pseudomonas aeruginosa infections has become increasingly challenging. The development of novel antibiotics against this multidrug-resistant bacterium is a priority, but many drug candidates never achieve effective concentrations in the bacterial cell due to its highly restrictive outer membrane and the action of multiple efflux pumps. Here, we develop a robust and simple reporter system in P. aeruginosa to screen chemical libraries and identify compounds that either enter the cell and remain inside or enter the cell and are exported by efflux systems. This approach enables the development of rules of compound uptake and retention in P. aeruginosa that will lead to more rational design of novel antibiotics.
铜绿假单胞菌对许多类抗生素具有固有抗性,这反映了其外膜的限制性和其众多外排系统的作用。然而,这种细菌中化合物摄取、保留和外排的动态仍然不完全了解。在这里,我们利用 Z 核苷酸感应核糖开关的传感能力,创建了一个实验系统,能够识别穿透细菌细胞、避免外排、并扰乱叶酸循环或嘌呤合成的化合物的物理化学和结构特性。在第一步中,筛选了一组结构多样的化合物,这些化合物富含抗叶酸药物,以检测外排缺陷型铜绿假单胞菌中 ZTP(5-氨基咪唑-4-羧酰胺核苷 5'-三磷酸)核糖开关报告基因的活性,使我们能够识别进入细胞并破坏叶酸途径的化合物。然后,使用同源外排有效的细菌对这些初始命中化合物进行再筛选,使我们能够将外排底物与外排避免物分离。我们通过使用高分辨率液相色谱-质谱(LC-MS)在缺乏外排的和有效的细菌中测量选择化合物的细胞内水平,证实了这种分类。这种简单而强大的方法,针对高通量筛选进行了优化,能够发现许多避免外排的可渗透化合物,并为进一步细化这种多药耐药革兰氏阴性病原体中外排的物理化学和结构规则铺平道路。 铜绿假单胞菌感染的治疗变得越来越具有挑战性。开发针对这种多药耐药细菌的新型抗生素是当务之急,但由于其高度限制性的外膜和多种外排泵的作用,许多候选药物从未达到细菌细胞中的有效浓度。在这里,我们在铜绿假单胞菌中开发了一种强大而简单的报告系统,用于筛选化学文库并识别进入细胞并留在细胞内或进入细胞并通过外排系统输出的化合物。这种方法使我们能够制定铜绿假单胞菌中化合物摄取和保留的规则,从而导致更合理地设计新型抗生素。