Dudka Damian, Akins R Brian, Lampson Michael A
Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
bioRxiv. 2023 Feb 28:2023.02.27.530329. doi: 10.1101/2023.02.27.530329.
Cell biologists typically focus on conserved regions of a protein, overlooking innovations that can shape its function over evolutionary time. Computational analyses can reveal potential innovations by detecting statistical signatures of positive selection that leads to rapid accumulation of beneficial mutations. However, these approaches are not easily accessible to non-specialists, limiting their use in cell biology. Here, we present an automated computational pipeline FREEDA (Finder of Rapidly Evolving Exons in De novo Assemblies) that provides a simple graphical user interface requiring only a gene name, integrates widely used molecular evolution tools to detect positive selection, and maps results onto protein structures predicted by AlphaFold. Applying FREEDA to >100 mouse centromere proteins, we find evidence of positive selection in intrinsically disordered regions of ancient domains, suggesting innovation of essential functions. As a proof-of-principle experiment, we show innovation in centromere binding of CENP-O. Overall, we provide an accessible computational tool to guide cell biology research and apply it to experimentally demonstrate functional innovation.
细胞生物学家通常专注于蛋白质的保守区域,而忽略了在进化过程中能够塑造其功能的创新区域。计算分析可以通过检测导致有益突变快速积累的正选择统计特征来揭示潜在的创新区域。然而,非专业人员难以使用这些方法,这限制了它们在细胞生物学中的应用。在这里,我们展示了一个自动化计算流程FREEDA(从头组装中快速进化外显子的发现者),它提供了一个仅需基因名称的简单图形用户界面,整合了广泛使用的分子进化工具来检测正选择,并将结果映射到由AlphaFold预测的蛋白质结构上。将FREEDA应用于100多种小鼠着丝粒蛋白,我们在古老结构域的内在无序区域发现了正选择的证据,这表明基本功能发生了创新。作为原理验证实验,我们展示了CENP - O着丝粒结合的创新。总体而言,我们提供了一个易于使用的计算工具来指导细胞生物学研究,并将其应用于实验性地证明功能创新。