Suppr超能文献

FREEDA:一个自动化的计算流水线指导蛋白质创新的实验测试。

FREEDA: An automated computational pipeline guides experimental testing of protein innovation.

机构信息

Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

J Cell Biol. 2023 Sep 4;222(9). doi: 10.1083/jcb.202212084. Epub 2023 Jun 26.

Abstract

Cell biologists typically focus on conserved regions of a protein, overlooking innovations that can shape its function over evolutionary time. Computational analyses can reveal potential innovations by detecting statistical signatures of positive selection that lead to rapid accumulation of beneficial mutations. However, these approaches are not easily accessible to non-specialists, limiting their use in cell biology. Here, we present an automated computational pipeline FREEDA that provides a simple graphical user interface requiring only a gene name; integrates widely used molecular evolution tools to detect positive selection in rodents, primates, carnivores, birds, and flies; and maps results onto protein structures predicted by AlphaFold. Applying FREEDA to >100 centromere proteins, we find statistical evidence of positive selection within loops and turns of ancient domains, suggesting innovation of essential functions. As a proof-of-principle experiment, we show innovation in centromere binding of mouse CENP-O. Overall, we provide an accessible computational tool to guide cell biology research and apply it to experimentally demonstrate functional innovation.

摘要

细胞生物学家通常专注于蛋白质的保守区域,而忽略了可能在进化过程中塑造其功能的创新。计算分析可以通过检测导致有益突变快速积累的正选择的统计特征来揭示潜在的创新。然而,这些方法对于非专业人士来说并不容易获得,限制了它们在细胞生物学中的应用。在这里,我们提出了一个自动化的计算管道 FREEDA,它提供了一个简单的图形用户界面,只需要一个基因名称;集成了广泛使用的分子进化工具,用于检测啮齿动物、灵长类动物、食肉动物、鸟类和苍蝇中的正选择;并将结果映射到由 AlphaFold 预测的蛋白质结构上。将 FREEDA 应用于 >100 个着丝粒蛋白,我们发现古老结构域的环和转角处存在正选择的统计证据,表明基本功能的创新。作为一个原理验证实验,我们展示了小鼠 CENP-O 的着丝粒结合的创新。总的来说,我们提供了一个易于使用的计算工具来指导细胞生物学研究,并将其应用于实验证明功能创新。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/419f/10292211/cc2716b49293/JCB_202212084_GA.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验