Beard Diana C, Zhang Xiyun, Wu Dennis Y, Martin Jenna R, Hamagami Nicole, Swift Raylynn G, McCullough Katherine B, Ge Xia, Bell-Hensley Austin, Zheng Hongjun, Lawrence Austin B, Hill Cheryl A, Papouin Thomas, McAlinden Audrey, Garbow Joel R, Dougherty Joseph D, Maloney Susan E, Gabel Harrison W
Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA.
bioRxiv. 2023 Feb 27:2023.02.27.530041. doi: 10.1101/2023.02.27.530041.
Phenotypic heterogeneity is a common feature of monogenic neurodevelopmental disorders that can arise from differential severity of missense variants underlying disease, but how distinct alleles impact molecular mechanisms to drive variable disease presentation is not well understood. Here, we investigate missense mutations in the DNA methyltransferase DNMT3A associated with variable overgrowth, intellectual disability, and autism, to uncover molecular correlates of phenotypic heterogeneity in neurodevelopmental disease. We generate a DNMT3A P900L/+ mouse model mimicking a disease mutation with mild-to-moderate severity and compare phenotypic and epigenomic effects with a severe R878H mutation. We show that the P900L mutation leads to disease-relevant overgrowth, obesity, and social deficits shared across DNMT3A disorder models, while the R878H mutation causes more extensive epigenomic disruption leading to differential dysregulation of enhancers elements. We identify distinct gene sets disrupted in each mutant which may contribute to mild or severe disease, and detect shared transcriptomic disruption that likely drives common phenotypes across affected individuals. Finally, we demonstrate that core gene dysregulation detected in DNMT3A mutant mice overlaps effects in other developmental disorder models, highlighting the importance of DNMT3A-deposited methylation in neurodevelopment. Together, these findings define central drivers of DNMT3A disorders and illustrate how variable disruption of transcriptional mechanisms can drive the spectrum of phenotypes in neurodevelopmental disease.
表型异质性是单基因神经发育障碍的一个常见特征,它可能源于疾病潜在错义变异的不同严重程度,但不同等位基因如何影响分子机制以驱动可变的疾病表现尚不清楚。在这里,我们研究与过度生长、智力残疾和自闭症相关的DNA甲基转移酶DNMT3A中的错义突变,以揭示神经发育疾病中表型异质性的分子关联。我们生成了一个模拟轻度至中度严重程度疾病突变的DNMT3A P900L/+小鼠模型,并将其表型和表观基因组效应与严重的R878H突变进行比较。我们发现P900L突变导致了DNMT3A疾病模型中共同的与疾病相关的过度生长、肥胖和社交缺陷,而R878H突变导致了更广泛的表观基因组破坏,导致增强子元件的差异失调。我们确定了每个突变体中破坏的不同基因集,这些基因集可能导致轻度或严重疾病,并检测到可能驱动受影响个体共同表型的共享转录组破坏。最后,我们证明在DNMT3A突变小鼠中检测到的核心基因失调与其他发育障碍模型中的效应重叠,突出了DNMT3A沉积的甲基化在神经发育中的重要性。总之,这些发现定义了DNMT3A疾病的核心驱动因素,并说明了转录机制的可变破坏如何驱动神经发育疾病的表型谱。