Suppr超能文献

利用结构磁共振成像、形态计量相似性和机器学习预测发育时期的“脑龄”

Predicting 'Brainage' in the Developmental Period using Structural MRI, Morphometric Similarity, and Machine Learning.

作者信息

Griffiths-King Daniel J, Wood Amanda G, Novak Jan

机构信息

Aston University.

Murdoch Children's Research Institute.

出版信息

Res Sq. 2023 Feb 28:rs.3.rs-2583936. doi: 10.21203/rs.3.rs-2583936/v1.

Abstract

Brain development is regularly studied using structural MRI. Recently, studies have used a combination of statistical learning and large-scale imaging databases of healthy-children to predict an individual's age from structural MRI. This data-driven, 'brainage' typically differs from the subjects chronological age, with this difference a potential measure of individual difference. Few studies have leveraged higher-order or connectomic representations of structural MRI data for this brainage approach. We leveraged morphometric similarity as a network-level approach to structural MRI to generate predictive models of age. We benchmarked these novel brain-age approaches using morphometric similarity against more typical, single feature (i.e. cortical thickness) approaches. We showed that these novel methods did not outperform cortical thickness or cortical volume measures. All models were significantly biased by age, but robust to motion confounds. The main results show that, whilst morphometric similarity mapping may be a novel way to leverage additional information from a T1-weighted structural MRI beyond individual features, in the context of a brain-age framework, morphometric similarity does not explain more variance than individual structural features. Morphometric similarity as a network-level approach to structural MRI may be poorly positioned to study individual differences in brain development in healthy individuals.

摘要

脑发育通常使用结构磁共振成像(MRI)进行研究。最近,一些研究结合了统计学习和健康儿童的大规模成像数据库,通过结构MRI来预测个体的年龄。这种数据驱动的“脑龄”通常与受试者的实际年龄不同,这种差异是个体差异的一种潜在衡量指标。很少有研究将结构MRI数据的高阶或连接组学表示用于这种脑龄方法。我们利用形态计量相似性作为一种网络层面的结构MRI方法来生成年龄预测模型。我们使用形态计量相似性将这些新颖的脑龄方法与更典型的单特征(即皮层厚度)方法进行了基准测试。我们发现这些新方法并不优于皮层厚度或皮层体积测量方法。所有模型都受到年龄的显著偏差影响,但对运动干扰具有鲁棒性。主要结果表明,虽然形态计量相似性映射可能是一种从T1加权结构MRI中利用个体特征之外的额外信息的新方法,但在脑龄框架下,形态计量相似性并不能比个体结构特征解释更多的方差。作为一种网络层面的结构MRI方法,形态计量相似性可能不太适合研究健康个体脑发育中的个体差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09ea/10002817/5774c17ffa3e/nihpp-rs2583936v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验