Suppr超能文献

自闭症谱系障碍个体大脑皮质结构变异性的个性化估计:大脑年龄和神经生物学相关性的预测指标。

Personalized estimates of brain cortical structural variability in individuals with Autism spectrum disorder: the predictor of brain age and neurobiology relevance.

机构信息

Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China.

Department of Radiology, Tianjin First Central Hospital, Tianjin, 300192, China.

出版信息

Mol Autism. 2023 Jul 28;14(1):27. doi: 10.1186/s13229-023-00558-1.

Abstract

BACKGROUND

Autism spectrum disorder (ASD) is a heritable condition related to brain development that affects a person's perception and socialization with others. Here, we examined variability in the brain morphology in ASD children and adolescent individuals at the level of brain cortical structural profiles and the level of each brain regional measure.

METHODS

We selected brain structural MRI data in 600 ASDs and 729 normal controls (NCs) from Autism Brain Imaging Data Exchange (ABIDE). The personalized estimate of similarity between gray matter volume (GMV) profiles of an individual to that of others in the same group was assessed by using the person-based similarity index (PBSI). Regional contributions to PBSI score were utilized for brain age gap estimation (BrainAGE) prediction model establishment, including support vector regression (SVR), relevance vector regression (RVR), and Gaussian process regression (GPR). The association between BrainAGE prediction in ASD and clinical performance was investigated. We further explored the related inter-regional profiles of gene expression from the Allen Human Brain Atlas with variability differences in the brain morphology between groups.

RESULTS

The PBSI score of GMV was negatively related to age regardless of the sample group, and the PBSI score was significantly lower in ASDs than in NCs. The regional contributions to the PBSI score of 126 brain regions in ASDs showed significant differences compared to NCs. RVR model achieved the best performance for predicting brain age. Higher inter-individual brain morphology variability was related to increased brain age, specific to communication symptoms. A total of 430 genes belonging to various pathways were identified as associated with brain cortical morphometric variation. The pathways, including short-term memory, regulation of system process, and regulation of nervous system process, were dominated mainly by gene sets for manno midbrain neurotypes.

LIMITATIONS

There is a sample mismatch between the gene expression data and brain imaging data from ABIDE. A larger sample size can contribute to the model training of BrainAGE and the validation of the results.

CONCLUSIONS

ASD has personalized heterogeneity brain morphology. The brain age gap estimation and transcription-neuroimaging associations derived from this trait are replenished in an additional direction to boost the understanding of the ASD brain.

摘要

背景

自闭症谱系障碍(ASD)是一种与大脑发育相关的遗传性疾病,会影响个体对他人的感知和社交能力。在这里,我们检查了 ASD 儿童和青少年个体的大脑形态在大脑皮质结构特征和每个大脑区域测量水平上的变异性。

方法

我们从自闭症脑成像数据交换(ABIDE)中选择了 600 名 ASD 和 729 名正常对照(NC)的脑结构 MRI 数据。通过使用基于个体的相似性指数(PBSI)评估个体的灰质体积(GMV)图谱与同一组中其他人的 GMV 图谱之间的相似性。利用区域对 PBSI 评分的贡献来建立大脑年龄差距估计(BrainAGE)预测模型,包括支持向量回归(SVR)、相关向量回归(RVR)和高斯过程回归(GPR)。研究了 ASD 中 BrainAGE 预测与临床表现之间的关联。我们还进一步探索了来自 Allen 人类大脑图谱的基因表达的相关区域图谱,以及组间大脑形态的变异性差异。

结果

GMV 的 PBSI 评分与年龄无关,无论样本组如何,均呈负相关,ASD 组的 PBSI 评分明显低于 NC 组。与 NC 组相比,ASD 组 126 个大脑区域的 PBSI 评分的区域贡献存在显著差异。RVR 模型在预测大脑年龄方面表现最佳。更高的个体间大脑形态变异性与大脑年龄增加有关,特别是与沟通症状有关。确定了 430 个属于各种途径的基因与大脑皮质形态变异有关。这些途径主要包括短期记忆、系统过程调节和神经系统过程调节,主要由甘露中脑神经类型的基因集主导。

局限性

ABIDE 的基因表达数据和脑成像数据之间存在样本不匹配。更大的样本量可以有助于 BrainAGE 的模型训练和结果验证。

结论

ASD 具有个性化的异质性大脑形态。从这个特征衍生的大脑年龄差距估计和转录-神经影像学关联在另一个方向上得到了补充,以增强对 ASD 大脑的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2432/10375633/e52832d1ada0/13229_2023_558_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验