Chalas Nikos, Omigie Diana, Poeppel David, van Wassenhove Virginie
Institute for Biomagnetism and Biosignal Analysis, University of Münster, P.C., 48149 Münster, Germany.
CEA, DRF/Joliot, NeuroSpin, INSERM, Cognitive Neuroimaging Unit; CNRS; Université Paris-Saclay, 91191 Gif/Yvette, France.
iScience. 2023 Feb 20;26(3):106257. doi: 10.1016/j.isci.2023.106257. eCollection 2023 Mar 17.
In conversational settings, seeing the speaker's face elicits internal predictions about the upcoming acoustic utterance. Understanding how the listener's cortical dynamics tune to the temporal statistics of audiovisual (AV) speech is thus essential. Using magnetoencephalography, we explored how large-scale frequency-specific dynamics of human brain activity adapt to AV speech delays. First, we show that the amplitude of phase-locked responses parametrically decreases with natural AV speech synchrony, a pattern that is consistent with predictive coding. Second, we show that the temporal statistics of AV speech affect large-scale oscillatory networks at multiple spatial and temporal resolutions. We demonstrate a spatial nestedness of oscillatory networks during the processing of AV speech: these oscillatory hierarchies are such that high-frequency activity (beta, gamma) is contingent on the phase response of low-frequency (delta, theta) networks. Our findings suggest that the endogenous temporal multiplexing of speech processing confers adaptability within the temporal regimes that are essential for speech comprehension.
在对话场景中,看到说话者的脸会引发对即将到来的语音话语的内部预测。因此,了解听众的皮层动力学如何调整以适应视听(AV)语音的时间统计至关重要。我们使用脑磁图技术,探索了人类大脑活动的大规模频率特异性动力学如何适应AV语音延迟。首先,我们表明,锁相反应的幅度会随着自然AV语音同步性而参数化降低,这一模式与预测编码一致。其次,我们表明,AV语音的时间统计会在多个空间和时间分辨率上影响大规模振荡网络。我们证明了在AV语音处理过程中振荡网络的空间嵌套性:这些振荡层次结构使得高频活动(β波、γ波)取决于低频(δ波、θ波)网络的相位响应。我们的研究结果表明,语音处理的内源性时间复用在对语音理解至关重要的时间范围内赋予了适应性。