Suppr超能文献

{(3, 4), 4}-富勒烯的反凯库勒数

Anti-Kekulé number of the {(3, 4), 4}-fullerene.

作者信息

Yang Rui, Jia Huimin

机构信息

School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, Henan, China.

出版信息

Front Chem. 2023 Feb 24;11:1132587. doi: 10.3389/fchem.2023.1132587. eCollection 2023.

Abstract

A is a 4-regular plane graph with exactly eight triangular faces and other quadrangular faces. An edge subset of is called an , if - is a connected subgraph without perfect matchings. The of is the smallest cardinality of anti-Kekulé sets and is denoted by . In this paper, we show that ; at the same time, we determine that the {(3, 4), 4}-fullerene graph with anti-Kekulé number 4 consists of two kinds of graphs: one of which is the graph consisting of the tubular graph , where is composed of concentric layers of quadrangles, capped on each end by a cap formed by four triangles which share a common vertex (see Figure 2 for the graph ); and the other is the graph , which contains four diamonds , , , and , where each diamond consists of two adjacent triangles with a common edge such that four edges , , , and form a matching (see Figure 7D for the four diamonds - ). As a consequence, we prove that if , then ; moreover, if , we give the condition to judge that the anti-Kekulé number of graph is 4 or 5.

摘要

A是一个4正则平面图,恰好有八个三角形面和其他四边形面。的一个边子集被称为一个反凯库勒集,如果(G - S)是一个没有完美匹配的连通子图。的反凯库勒数是反凯库勒集的最小基数,用(ak(G))表示。在本文中,我们证明了(ak(G)\geq4);同时,我们确定反凯库勒数为4的({(3, 4), 4}) - 富勒烯图由两种图组成:一种是由管状图(T_n)构成的图(G_1),其中(T_n)由(n)个同心四边形层组成,两端由四个共享一个公共顶点的三角形形成的帽封顶(图(G_1)见图2);另一种是图(G_2),它包含四个菱形(D_1)、(D_2)、(D_3)和(D_4),其中每个菱形(D_i)由两个有公共边的相邻三角形组成,使得四条边(e_1)、(e_2)、(e_3)和(e_4)形成一个匹配(四个菱形(D_1 - D_4)见图7D)。因此,我们证明了如果(G)是({(3, 4), 4}) - 富勒烯图,那么(ak(G)\geq4);此外,如果(G)是({(3, 4), 4}) - 富勒烯图,我们给出判断图(G)的反凯库勒数是4还是5的条件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6899/10000290/e13c5e895596/fchem-11-1132587-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验