Wang Jing-Yang, Mei Lei, Liu Yang, Jin Qiu-Yan, Hu Kong-Qiu, Yu Ji-Pan, Jiao Cai-Shan, Zhang Meng, Shi Wei-Qun
Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China.
Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
ACS Omega. 2023 Feb 24;8(9):8894-8909. doi: 10.1021/acsomega.3c00640. eCollection 2023 Mar 7.
As an aprotic O-donor ligand, 4,4'-bipyridine ,'-dioxide (DPO) shows good potential for the preparation of uranyl coordination compounds. In this work, by regulating reactant compositions and synthesis conditions, diverse coordination assembly between uranyl and DPO under different reaction conditions was achieved in the presence of other coexisting O-donors. A total of ten uranyl-DPO compounds, U-DPO-1 to U-DPO-10, have been synthesized by evaporation or hydro/solvothermal treatment, and the possible competition and cooperation of DPO with other O-donors for the formation of these uranyl-DPO compounds are discussed. Starting with an aqueous solution of uranyl nitrate, it is found that an anionic nitrate or hydroxyl group is involved in the coordination sphere of uranyl in U-DPO-1 ((UO)(NO)(HO)·(DPO)), U-DPO-2 ((UO)(NO)(DPO)), and U-DPO-3 ((UO)(DPO)(μ-OH)), where DPO takes three different kinds of coordination modes, i.e. uncoordinated, monodentate, and biconnected. The utilization of UO(CFSO) in acetonitrile, instead of an aqueous solution of uranyl nitrate, precludes the participation of nitrate and hydroxyl, and ensures the engagement of DPO ligands (4-5 DPO ligands for each uranyl) in a uranyl coordination sphere of U-DPO-4 ((UO)(CFSO)(DPO)), U-DPO-5 (UO(HO)(DPO)) and U-DPO-6 ((UO)(DPO)). Moreover, when combined with anionic carboxylate ligands, terephthalic acid (HTPA), isophthalic acid (HIPA), and succinic acid (HSA), DPO works well with them to produce four mixed-ligand uranyl compounds with similar structures of two-dimensional (2D) networks or three-dimensional (3D) frameworks, U-DPO-7 ((UO)(TPA)(DPO)), U-DPO-8 ((UO)(DPO)(IPA)·0.5HO), U-DPO-9 ((UO)(SA)(DPO)·HO), and U-DPO-10 ((UO)(μ-OH)(SA)(DPO)). Density functional theory (DFT) calculations conducted to probe the bonding features between uranyl ions and different O-donor ligands show that the bonding ability of DPO is better than that of anionic CFSO , nitrate, and a neutral HO molecule and comparable to that of an anionic carboxylate group. Characterization of physicochemical properties of U-DPO-7 and U-DPO-10 with high phase purity including infrared (IR) spectroscopy, thermogravimetric analysis (TGA), and luminescence properties is also provided.
作为一种非质子O供体配体,4,4'-联吡啶二氧化物(DPO)在制备铀酰配位化合物方面显示出良好的潜力。在这项工作中,通过调节反应物组成和合成条件,在其他共存的O供体存在下,实现了不同反应条件下铀酰与DPO之间的多种配位组装。通过蒸发或水热/溶剂热处理共合成了十种铀酰-DPO化合物,U-DPO-1至U-DPO-10,并讨论了DPO与其他O供体在形成这些铀酰-DPO化合物时可能的竞争与合作。从硝酸铀酰水溶液开始,发现在U-DPO-1((UO)(NO)(HO)·(DPO))、U-DPO-2((UO)(NO)(DPO))和U-DPO-3((UO)(DPO)(μ-OH))中,阴离子硝酸根或羟基参与了铀酰的配位球,其中DPO采取三种不同的配位模式,即未配位、单齿和双连接。在乙腈中使用UO(CFSO)代替硝酸铀酰水溶液,排除了硝酸根和羟基的参与,并确保了DPO配体(每个铀酰有4-5个DPO配体)参与U-DPO-4((UO)(CFSO)(DPO))、U-DPO-5(UO(HO)(DPO))和U-DPO-6((UO)(DPO))的铀酰配位球。此外,当与阴离子羧酸配体对苯二甲酸(HTPA)、间苯二甲酸(HIPA)和琥珀酸(HSA)结合时,DPO与它们配合良好,生成了四种具有二维(2D)网络或三维(3D)框架相似结构的混合配体铀酰化合物,U-DPO-7((UO)(TPA)(DPO))、U-DPO-8((UO)(DPO)(IPA)·0.5HO)、U-DPO-9((UO)(SA)(DPO)·HO)和U-DPO-10((UO)(μ-OH)(SA)(DPO))。为探究铀酰离子与不同O供体配体之间的键合特征而进行的密度泛函理论(DFT)计算表明,DPO的键合能力优于阴离子CFSO、硝酸根和中性HO分子,与阴离子羧酸基团相当。还提供了对具有高相纯度的U-DPO-7和U-DPO-10的物理化学性质的表征,包括红外(IR)光谱、热重分析(TGA)和发光性质。