Songdechakraiwut Tananun, Chung Moo K
Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison.
Ann Appl Stat. 2023 Mar;17(1):403-433. doi: 10.1214/22-aoas1633. Epub 2023 Jan 24.
This paper proposes a novel topological learning framework that integrates networks of different sizes and topology through persistent homology. Such challenging task is made possible through the introduction of a computationally efficient topological loss. The use of the proposed loss bypasses the intrinsic computational bottleneck associated with matching networks. We validate the method in extensive statistical simulations to assess its effectiveness when discriminating networks with different topology. The method is further demonstrated in a twin brain imaging study where we determine if brain networks are genetically heritable. The challenge here is due to the difficulty of overlaying the topologically different functional brain networks obtained from resting-state functional MRI onto the template structural brain network obtained through diffusion MRI.
本文提出了一种新颖的拓扑学习框架,该框架通过持久同调将不同大小和拓扑结构的网络整合在一起。通过引入一种计算效率高的拓扑损失,使得这种具有挑战性的任务成为可能。所提出的损失的使用绕过了与匹配网络相关的内在计算瓶颈。我们在广泛的统计模拟中验证了该方法,以评估其在区分具有不同拓扑结构的网络时的有效性。该方法在一项双胞胎脑成像研究中得到了进一步验证,在该研究中我们确定脑网络是否具有遗传遗传性。这里的挑战在于,将从静息态功能磁共振成像获得的拓扑结构不同的功能性脑网络叠加到通过扩散磁共振成像获得的模板结构性脑网络上存在困难。