Suppr超能文献

脑网络的拓扑学习

TOPOLOGICAL LEARNING FOR BRAIN NETWORKS.

作者信息

Songdechakraiwut Tananun, Chung Moo K

机构信息

Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison.

出版信息

Ann Appl Stat. 2023 Mar;17(1):403-433. doi: 10.1214/22-aoas1633. Epub 2023 Jan 24.

Abstract

This paper proposes a novel topological learning framework that integrates networks of different sizes and topology through persistent homology. Such challenging task is made possible through the introduction of a computationally efficient topological loss. The use of the proposed loss bypasses the intrinsic computational bottleneck associated with matching networks. We validate the method in extensive statistical simulations to assess its effectiveness when discriminating networks with different topology. The method is further demonstrated in a twin brain imaging study where we determine if brain networks are genetically heritable. The challenge here is due to the difficulty of overlaying the topologically different functional brain networks obtained from resting-state functional MRI onto the template structural brain network obtained through diffusion MRI.

摘要

本文提出了一种新颖的拓扑学习框架,该框架通过持久同调将不同大小和拓扑结构的网络整合在一起。通过引入一种计算效率高的拓扑损失,使得这种具有挑战性的任务成为可能。所提出的损失的使用绕过了与匹配网络相关的内在计算瓶颈。我们在广泛的统计模拟中验证了该方法,以评估其在区分具有不同拓扑结构的网络时的有效性。该方法在一项双胞胎脑成像研究中得到了进一步验证,在该研究中我们确定脑网络是否具有遗传遗传性。这里的挑战在于,将从静息态功能磁共振成像获得的拓扑结构不同的功能性脑网络叠加到通过扩散磁共振成像获得的模板结构性脑网络上存在困难。

相似文献

1
TOPOLOGICAL LEARNING FOR BRAIN NETWORKS.脑网络的拓扑学习
Ann Appl Stat. 2023 Mar;17(1):403-433. doi: 10.1214/22-aoas1633. Epub 2023 Jan 24.
2
Topological Learning and Its Application to Multimodal Brain Network Integration.拓扑学习及其在多模态脑网络整合中的应用
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12902:166-176. doi: 10.1007/978-3-030-87196-3_16. Epub 2021 Sep 21.
9
Topological state-space estimation of functional human brain networks.功能人脑网络的拓扑状态空间估计。
PLoS Comput Biol. 2024 May 13;20(5):e1011869. doi: 10.1371/journal.pcbi.1011869. eCollection 2024 May.
10
Exact topological inference of the resting-state brain networks in twins.双胞胎静息态脑网络的精确拓扑推断
Netw Neurosci. 2019 Jul 1;3(3):674-694. doi: 10.1162/netn_a_00091. eCollection 2019.

引用本文的文献

5
Topological state-space estimation of functional human brain networks.功能人脑网络的拓扑状态空间估计。
PLoS Comput Biol. 2024 May 13;20(5):e1011869. doi: 10.1371/journal.pcbi.1011869. eCollection 2024 May.
9
Hodge Laplacian of Brain Networks.脑网络的 Hodge Laplacian。
IEEE Trans Med Imaging. 2023 May;42(5):1563-1573. doi: 10.1109/TMI.2022.3233876. Epub 2023 May 2.
10
Topological data analysis of human brain networks through order statistics.基于有序统计的人类脑网络拓扑数据分析。
PLoS One. 2023 Mar 13;18(3):e0276419. doi: 10.1371/journal.pone.0276419. eCollection 2023.

本文引用的文献

1
Topological Learning and Its Application to Multimodal Brain Network Integration.拓扑学习及其在多模态脑网络整合中的应用
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12902:166-176. doi: 10.1007/978-3-030-87196-3_16. Epub 2021 Sep 21.
2
Lattice Paths for Persistent Diagrams.持久图的格路径。
Interpret Mach Intell Med Image Comput Topogr Data Anal Appl Med Data (2021). 2021;12929:77-86. doi: 10.1007/978-3-030-87444-5_8. Epub 2021 Sep 21.
4
Rapid Acceleration of the Permutation Test via Transpositions.通过对换实现排列检验的快速加速
Connect Neuroimaging (2019). 2019 Oct;11848:42-53. doi: 10.1007/978-3-030-32391-2_5. Epub 2019 Oct 10.
6
STATISTICAL INFERENCE ON THE NUMBER OF CYCLES IN BRAIN NETWORKS.脑网络中循环次数的统计推断
Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:113-116. doi: 10.1109/ISBI.2019.8759222. Epub 2019 Jul 11.
7
Exact topological inference of the resting-state brain networks in twins.双胞胎静息态脑网络的精确拓扑推断
Netw Neurosci. 2019 Jul 1;3(3):674-694. doi: 10.1162/netn_a_00091. eCollection 2019.
8
Estimating Dynamic Functional Brain Connectivity With a Sparse Hidden Markov Model.基于稀疏隐马尔可夫模型估计动态功能脑连接
IEEE Trans Med Imaging. 2020 Feb;39(2):488-498. doi: 10.1109/TMI.2019.2929959. Epub 2019 Jul 19.
9
Brain connectivity-informed regularization methods for regression.用于回归的脑连接性信息正则化方法。
Stat Biosci. 2019 Apr;11(1):47-90. doi: 10.1007/s12561-017-9208-x. Epub 2017 Dec 6.
10
Heritability Estimation of Reliable Connectomic Features.可靠连接组学特征的遗传力估计
Connect Neuroimaging (2018). 2018 Sep;11083:58-66. doi: 10.1007/978-3-030-00755-3_7. Epub 2018 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验