Suppr超能文献

一种用于癌症治疗中基于纳米技术的光疗个性化的预测模型。

A predictive model for personalization of nanotechnology-based phototherapy in cancer treatment.

作者信息

Varon Eli, Blumrosen Gaddi, Shefi Orit

机构信息

Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel.

Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel.

出版信息

Front Oncol. 2023 Jan 4;12:1037419. doi: 10.3389/fonc.2022.1037419. eCollection 2022.

Abstract

A major challenge in radiation oncology is the prediction and optimization of clinical responses in a personalized manner. Recently, nanotechnology-based cancer treatments are being combined with photodynamic therapy (PDT) and photothermal therapy (PTT). Predictive models based on machine learning techniques can be used to optimize the clinical setup configuration, including such parameters as laser radiation intensity, treatment duration, and nanoparticle features. In this article we demonstrate a methodology that can be used to identify the optimal treatment parameters for PDT and PTT by collecting data from cytotoxicity assay of PDT/PTT-induced cell death using a single nanocomplex. We construct three machine learning prediction models, employing regression, interpolation, and low- degree analytical function fitting, to predict the laser radiation intensity and duration settings that maximize the treatment efficiency. To examine the accuracy of these prediction models, we construct a dedicated dataset for PDT, PTT, and a combined treatment; this dataset is based on cell death measurements after light radiation treatment and is divided into training and test sets. The preliminary results show that the performance of all three models is sufficient, with death rate errors of 0.09, 0.15, and 0.12 for the regression, interpolation, and analytical function fitting approaches, respectively. Nevertheless, due to its simple form, the analytical function method has an advantage in clinical application and can be used for further analysis of the sensitivity of performance to the treatment parameters. Overall, the results of this study form a baseline for a future personalized prediction model based on machine learning in the domain of combined nanotechnology- and phototherapy-based cancer treatment.

摘要

放射肿瘤学中的一个主要挑战是以个性化方式预测和优化临床反应。最近,基于纳米技术的癌症治疗正与光动力疗法(PDT)和光热疗法(PTT)相结合。基于机器学习技术的预测模型可用于优化临床设置配置,包括激光辐射强度、治疗持续时间和纳米颗粒特征等参数。在本文中,我们展示了一种方法,该方法可通过使用单个纳米复合物从PDT/PTT诱导的细胞死亡的细胞毒性测定中收集数据,来确定PDT和PTT的最佳治疗参数。我们构建了三个机器学习预测模型,采用回归、插值和低阶分析函数拟合,以预测使治疗效率最大化的激光辐射强度和持续时间设置。为了检验这些预测模型的准确性,我们为PDT、PTT和联合治疗构建了一个专用数据集;该数据集基于光辐射治疗后的细胞死亡测量结果,并分为训练集和测试集。初步结果表明,所有三个模型的性能都足够,回归、插值和分析函数拟合方法的死亡率误差分别为0.09、0.15和0.12。然而,由于其形式简单,分析函数方法在临床应用中具有优势,可用于进一步分析性能对治疗参数的敏感性。总体而言,本研究结果为基于纳米技术和光疗的联合癌症治疗领域中未来基于机器学习的个性化预测模型奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6218/9999042/156f56ab570d/fonc-12-1037419-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验