Suppr超能文献

超薄 Kagome 金属 FeSn 对氧气和水的反应活性。

Reactivity of Ultrathin Kagome Metal FeSn toward Oxygen and Water.

作者信息

Blyth James, Sridhar Sadhana, Zhao Mengting, Ali Sajid, Vu Thi-Hai-Yen, Li Qile, Maniatis Johnathon, Causer Grace L, Fuhrer Michael S, Medhekar Nikhil V, Tadich Anton, Edmonds Mark T

机构信息

School of Physics and Astronomy, Monash University, Clayton 3800, VIC, Australia.

ARC Centre for Future Low Energy Electronics Technologies, Monash University, Clayton 3800, VIC, Australia.

出版信息

ACS Nano. 2024 Oct 8;18(40):27570-27578. doi: 10.1021/acsnano.4c08600. Epub 2024 Sep 26.

Abstract

The kagome metal FeSn consists of alternating layers of kagome-lattice FeSn and honeycomb Sn and exhibits great potential for applications in future low-energy electronics and spintronics because of an ideal combination of topological phases and high-temperature magnetic ordering. Robust synthesis methods for ultrathin FeSn films, as well as an understanding of their air stability, are crucial for its development and long-term operation in future devices. In this work, we realize large-area, <10 nm thick, epitaxial FeSn thin films and explore the oxidation process synchrotron-based photoelectron spectroscopy using oxygen and water dosing, as well as air exposure. Upon exposure to the atmosphere, the FeSn films are shown to be highly reactive, with a stable ∼3 nm thick oxide layer forming at the surface within 10 min. Notably, the surface Fe remains largely unoxidized when compared with Sn, which undergoes near-complete oxidation. Additionally, the band structure remains metallic under oxygen exposure. These are further confirmed with controlled dosing of O and HO, where only the Sn (stanene) interlayers within the FeSn lattice oxidize, suggesting the FeSn kagome layers remain almost pristine. These results are in excellent agreement with first-principles calculations, which show that Fe-O bonds to the FeSn layer are energetically unfavorable and a large formation energy preference of 1.37 eV for Sn-O bonds in the stanene Sn layer over Sn-O bonds in the kagome FeSn layer. The demonstration that oxidation only occurs within the stanene layers and the preservation of the Dirac bands may provide additional avenues in how to engineer, handle, and prepare future kagome metal devices.

摘要

戈薇金属FeSn由交替的戈薇晶格FeSn层和蜂窝状Sn层组成,由于拓扑相和高温磁有序的理想结合,在未来低能耗电子学和自旋电子学应用中展现出巨大潜力。用于超薄FeSn薄膜的稳健合成方法以及对其空气稳定性的理解,对于其在未来器件中的发展和长期运行至关重要。在这项工作中,我们制备出大面积、厚度小于10 nm的外延FeSn薄膜,并利用氧气和水的剂量注入以及空气暴露,通过基于同步加速器的光电子能谱研究其氧化过程。暴露于大气中时,FeSn薄膜表现出高反应活性,在10分钟内表面形成了稳定的约3 nm厚的氧化层。值得注意的是,与几乎完全氧化的Sn相比,表面的Fe在很大程度上未被氧化。此外,在氧气暴露下能带结构仍保持金属性。通过对O和H₂O的可控剂量注入进一步证实了这一点,其中FeSn晶格内只有Sn(锡烯)中间层发生氧化,这表明戈薇FeSn层几乎保持原始状态。这些结果与第一性原理计算结果高度吻合,计算表明Fe与FeSn层形成的Fe - O键在能量上不利,并且在锡烯Sn层中Sn - O键比在戈薇FeSn层中Sn - O键具有1.37 eV的大形成能优势。氧化仅发生在锡烯层内且狄拉克带得以保留这一现象,可能为未来戈薇金属器件的设计、处理和制备提供额外途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验