Suppr超能文献

富含缺陷的NiPS纳米片助力塑料废物的光催化重整

Boosted Photoreforming of Plastic Waste Defect-Rich NiPS Nanosheets.

作者信息

Zhang Shuai, Li Haobo, Wang Lei, Liu Jiandang, Liang Guijie, Davey Kenneth, Ran Jingrun, Qiao Shi-Zhang

机构信息

School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.

Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China.

出版信息

J Am Chem Soc. 2023 Mar 22;145(11):6410-6419. doi: 10.1021/jacs.2c13590. Epub 2023 Mar 13.

Abstract

Sustainable conversion of plastic waste to mitigate environmental threats and reclaim waste value is important. Ambient-condition photoreforming is practically attractive to convert waste to hydrogen (H); however, it has poor performance because of mutual constraint between proton reduction and substrate oxidation. Here, we realize a cooperative photoredox using defect-rich chalcogenide nanosheet-coupled photocatalysts, e.g., d-NiPS/CdS, to give an ultrahigh H evolution of ∼40 mmol g h and organic acid yield up to 78 μmol within 9 h, together with excellent stability beyond 100 h in photoreforming of commercial waste plastic poly(lactic acid) and poly(ethylene terephthalate). Significantly, these metrics represent one of the most efficient plastic photoreforming reported. ultrafast spectroscopic studies confirm a charge transfer-mediated reaction mechanism in which d-NiPS rapidly extracts electrons from CdS to boost H evolution, favoring hole-dominated substrate oxidation to improve overall efficiency. This work opens practical avenues for converting plastic waste into fuels and chemicals.

摘要

将塑料废物进行可持续转化以减轻环境威胁并回收废物价值至关重要。在环境条件下进行光重整对于将废物转化为氢气(H₂)具有实际吸引力;然而,由于质子还原和底物氧化之间的相互制约,其性能较差。在此,我们利用富含缺陷的硫族化物纳米片耦合光催化剂,例如d-NiPS₃/CdS,实现了协同光氧化还原,在9小时内产生高达约40 mmol g⁻¹ h⁻¹的超高析氢量和高达78 μmol的有机酸产量,并且在商业废塑料聚乳酸和聚对苯二甲酸乙二酯的光重整中具有超过100小时的优异稳定性。值得注意的是,这些指标代表了已报道的最有效的塑料光重整之一。超快光谱研究证实了电荷转移介导的反应机制,其中d-NiPS₃迅速从CdS中提取电子以促进析氢,有利于以空穴为主的底物氧化以提高整体效率。这项工作为将塑料废物转化为燃料和化学品开辟了切实可行的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验