Suppr超能文献

利用气象因素进行戊型肝炎发病率预测的深度学习模型。

Deep learning models for hepatitis E incidence prediction leveraging meteorological factors.

机构信息

Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China.

School of Data and Computer Science, Shandong Women's Unversity, Jinan, Shandong, China.

出版信息

PLoS One. 2023 Mar 13;18(3):e0282928. doi: 10.1371/journal.pone.0282928. eCollection 2023.

Abstract

BACKGROUND

Infectious diseases are a major threat to public health, causing serious medical consumption and casualties. Accurate prediction of infectious diseases incidence is of great significance for public health organizations to prevent the spread of diseases. However, only using historical incidence data for prediction can not get good results. This study analyzes the influence of meteorological factors on the incidence of hepatitis E, which are used to improve the accuracy of incidence prediction.

METHODS

We extracted the monthly meteorological data, incidence and cases number of hepatitis E from January 2005 to December 2017 in Shandong province, China. We employ GRA method to analyze the correlation between the incidence and meteorological factors. With these meteorological factors, we achieve a variety of methods for incidence of hepatitis E by LSTM and attention-based LSTM. We selected data from July 2015 to December 2017 to validate the models, and the rest was taken as training set. Three metrics were applied to compare the performance of models, including root mean square error(RMSE), mean absolute percentage error(MAPE) and mean absolute error(MAE).

RESULTS

Duration of sunshine and rainfall-related factors(total rainfall, maximum daily rainfall) are more relevant to the incidence of hepatitis E than other factors. Without meteorological factors, we obtained 20.74%, 19.50% for incidence in term of MAPE, by LSTM and A-LSTM, respectively. With meteorological factors, we obtained 14.74%, 12.91%, 13.21%, 16.83% for incidence, in term of MAPE, by LSTM-All, MA-LSTM-All, TA-LSTM-All, BiA-LSTM-All, respectively. The prediction accuracy increased by 7.83%. Without meteorological factors, we achieved 20.41%, 19.39% for cases in term of MAPE, by LSTM and A-LSTM, respectively. With meteorological factors, we achieved 14.20%, 12.49%, 12.72%, 15.73% for cases, in term of MAPE, by LSTM-All, MA-LSTM-All, TA-LSTM-All, BiA-LSTM-All, respectively. The prediction accuracy increased by 7.92%. More detailed results are shown in results section of this paper.

CONCLUSIONS

The experiments show that attention-based LSTM is superior to other comparative models. Multivariate attention and temporal attention can greatly improve the prediction performance of the models. Among them, when all meteorological factors are used, multivariate attention performance is better. This study can provide reference for the prediction of other infectious diseases.

摘要

背景

传染病是公共卫生的主要威胁,会导致严重的医疗消费和人员伤亡。准确预测传染病的发病率对于公共卫生组织预防疾病传播具有重要意义。然而,仅使用历史发病率数据进行预测并不能取得良好的效果。本研究分析气象因素对戊型肝炎发病率的影响,并用这些气象因素来提高发病率预测的准确性。

方法

我们提取了 2005 年 1 月至 2017 年 12 月山东省的每月气象数据、戊型肝炎发病率和病例数。我们采用 GRA 方法分析发病率与气象因素的相关性。使用这些气象因素,我们通过 LSTM 和基于注意力的 LSTM 实现了多种戊型肝炎发病率预测方法。我们选择 2015 年 7 月至 2017 年 12 月的数据进行模型验证,其余数据作为训练集。我们采用均方根误差(RMSE)、平均绝对百分比误差(MAPE)和平均绝对误差(MAE)三种指标来比较模型的性能。

结果

日照时间和与降雨有关的因素(总降雨量、最大日降雨量)与戊型肝炎的发病率比其他因素更为相关。在没有气象因素的情况下,我们通过 LSTM 和 A-LSTM 分别获得了 20.74%和 19.50%的发病率 MAPE 值。有气象因素时,我们通过 LSTM-All、MA-LSTM-All、TA-LSTM-All 和 BiA-LSTM-All 分别获得了 14.74%、12.91%、13.21%和 16.83%的发病率 MAPE 值,预测精度提高了 7.83%。在没有气象因素的情况下,我们通过 LSTM 和 A-LSTM 分别获得了 20.41%和 19.39%的病例数 MAPE 值。有气象因素时,我们通过 LSTM-All、MA-LSTM-All、TA-LSTM-All 和 BiA-LSTM-All 分别获得了 14.20%、12.49%、12.72%和 15.73%的病例数 MAPE 值,预测精度提高了 7.92%。更详细的结果见本文结果部分。

结论

实验表明,基于注意力的 LSTM 优于其他比较模型。多变量注意力和时间注意力可以极大地提高模型的预测性能。其中,当使用所有气象因素时,多变量注意力的性能更好。本研究可为其他传染病的预测提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d0/10010535/a8bc1b3fc959/pone.0282928.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验