School of Mathematical Sciences, Queen Mary University of London, London, United Kingdom.
Centre for Evolution and Cancer, Institute of Cancer Research, London, United Kingdom.
PLoS Comput Biol. 2023 Mar 13;19(3):e1010952. doi: 10.1371/journal.pcbi.1010952. eCollection 2023 Mar.
The signature of early cancer dynamics on the spatial arrangement of tumour cells is poorly understood, and yet could encode information about how sub-clones grew within the expanding tumour. Novel methods of quantifying spatial tumour data at the cellular scale are required to link evolutionary dynamics to the resulting spatial architecture of the tumour. Here, we propose a framework using first passage times of random walks to quantify the complex spatial patterns of tumour cell population mixing. First, using a simple model of cell mixing we demonstrate how first passage time statistics can distinguish between different pattern structures. We then apply our method to simulated patterns of mutated and non-mutated tumour cell population mixing, generated using an agent-based model of expanding tumours, to explore how first passage times reflect mutant cell replicative advantage, time of emergence and strength of cell pushing. Finally, we explore applications to experimentally measured human colorectal cancer, and estimate parameters of early sub-clonal dynamics using our spatial computational model. We infer a wide range of sub-clonal dynamics, with mutant cell division rates varying between 1 and 4 times the rate of non-mutated cells across our sample set. Some mutated sub-clones emerged after as few as 100 non-mutant cell divisions, and others only after 50,000 divisions. The majority were consistent with boundary driven growth or short-range cell pushing. By analysing multiple sub-sampled regions in a small number of samples, we explore how the distribution of inferred dynamics could inform about the initial mutational event. Our results demonstrate the efficacy of first passage time analysis as a new methodology in spatial analysis of solid tumour tissue, and suggest that patterns of sub-clonal mixing can provide insights into early cancer dynamics.
早期癌症动力学在肿瘤细胞空间排列上的特征尚不清楚,但它可能编码了关于亚克隆在肿瘤扩张过程中如何生长的信息。需要新的方法来量化细胞尺度的空间肿瘤数据,将进化动力学与肿瘤的空间结构联系起来。在这里,我们提出了一个使用随机游走首次通过时间来量化肿瘤细胞群体混合的复杂空间模式的框架。首先,我们使用一个简单的细胞混合模型来演示首次通过时间统计如何区分不同的模式结构。然后,我们将我们的方法应用于使用扩展肿瘤的基于代理的模型生成的突变和非突变肿瘤细胞群体混合的模拟模式,以探索首次通过时间如何反映突变细胞复制优势、出现时间和细胞推动强度。最后,我们探索了对实验测量的人类结直肠癌的应用,并使用我们的空间计算模型估计早期亚克隆动力学的参数。我们推断出广泛的亚克隆动力学,突变细胞的分裂率是非突变细胞的 1 到 4 倍,跨越了我们的样本集。一些突变亚克隆在不到 100 个非突变细胞分裂后出现,而另一些则在 50000 次分裂后才出现。大多数与边界驱动的生长或短程细胞推动一致。通过分析少数样本中的多个子采样区域,我们探讨了推断动力学的分布如何为初始突变事件提供信息。我们的结果证明了首次通过时间分析作为实体肿瘤组织空间分析的新方法的有效性,并表明亚克隆混合模式可以提供对早期癌症动力学的深入了解。