Suppr超能文献

OCT 和人工智能在白人患者眼中预测可植入 Collamer 透镜植入术后的拱顶。

Predictability of the vault after implantable collamer lens implantation using OCT and artificial intelligence in White patient eyes.

机构信息

From the Centro Oculistico Bresciano, Brescia, Italy (Russo, Filini, Festa); Eye Clinic, Department of Neurological and Vision Sciences, University of Brescia, Italy (Russo, Morescalchi, Boldini, Semeraro); I.R.C.C.S.-G.B. Bietti Foundation, Rome, Italy (Savini).

出版信息

J Cataract Refract Surg. 2023 Jul 1;49(7):724-731. doi: 10.1097/j.jcrs.0000000000001182. Epub 2023 Mar 11.

Abstract

PURPOSE

To compare the predicted vault using machine learning with the achieved vault using the online manufacturer's nomogram in patients undergoing posterior chamber implantation with an implantable collamer lens (ICL).

SETTING

Centro Oculistico Bresciano, Brescia, Italy, and I.R.C.C.S.-Bietti Foundation, Rome, Italy.

DESIGN

Retrospective multicenter comparison study.

METHODS

561 eyes from 300 consecutive patients who underwent ICL placement surgery were included in this study. All preoperative and postoperative measurements were obtained by anterior segment optical coherence tomography (AS-OCT; MS-39). The actual vault was quantitatively measured and compared with the predicted vault using machine learning of AS-OCT metrics.

RESULTS

A strong correlation between model predictions and achieved vaulting was detected by random forest regression (RF; R2 = 0.36), extra tree regression (ET; R2 = 0.50), and extreme gradient boosting regression ( R2 = 0.39). Conversely, a high residual difference was observed between achieved vaulting values and those predicted by the multilinear regression ( R2 = 0.33) and ridge regression ( R2 = 0.33). ET and RF regressions showed significantly lower mean absolute errors and higher percentages of eyes within ±250 μm of the intended ICL vault compared with the conventional nomogram (94%, 90%, and 72%, respectively; P < .001). ET classifiers achieved an accuracy (percentage of vault in the range of 250 to 750 μm) of up to 98%.

CONCLUSIONS

Machine learning of preoperative AS-OCT metrics achieved excellent predictability of ICL vault and size, which was significantly higher than the accuracy of the online manufacturer's nomogram, providing the surgeon with a valuable aid for predicting the ICL vault.

摘要

目的

比较使用机器学习预测的拱顶与植入可折叠式人工晶状体(ICL)的后房型植入术中使用在线制造商的列线图获得的实际拱顶。

地点

意大利布雷西亚 Centro Oculistico Bresciano 和意大利罗马 I.R.C.C.S.-Bietti 基金会。

设计

回顾性多中心比较研究。

方法

本研究纳入了 300 例连续接受 ICL 放置手术的患者的 561 只眼。所有术前和术后测量均通过眼前节光学相干断层扫描(AS-OCT;MS-39)获得。通过 AS-OCT 指标的机器学习对实际拱顶进行定量测量并与预测拱顶进行比较。

结果

随机森林回归(RF;R2=0.36)、额外树回归(ET;R2=0.50)和极端梯度提升回归(R2=0.39)检测到模型预测值与实际拱顶之间存在较强的相关性。相反,实际拱顶值与多元线性回归(R2=0.33)和岭回归(R2=0.33)预测的拱顶值之间存在较大的残差差异。与传统列线图相比,ET 和 RF 回归的平均绝对误差显著降低,并且有更多的眼在预定 ICL 拱顶的±250μm 范围内(分别为 94%、90%和 72%;P<0.001)。ET 分类器的准确率(拱顶在 250μm 至 750μm 范围内的百分比)高达 98%。

结论

术前 AS-OCT 指标的机器学习实现了对 ICL 拱顶和大小的出色预测能力,明显高于在线制造商列线图的准确性,为预测 ICL 拱顶提供了有价值的辅助工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be93/10284125/3e72e1335cbc/jcrs-49-724-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验