Suppr超能文献

展示使用新的历史拟合和仿真包 - hmer 进行多国结核模型校准。

Demonstrating multi-country calibration of a tuberculosis model using new history matching and emulation package - hmer.

机构信息

Centre for Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, UK.

Department of Mathematical Sciences, Durham University, UK.

出版信息

Epidemics. 2023 Jun;43:100678. doi: 10.1016/j.epidem.2023.100678. Epub 2023 Mar 7.

Abstract

Infectious disease models are widely used by epidemiologists to improve the understanding of transmission dynamics and disease natural history, and to predict the possible effects of interventions. As the complexity of such models increases, however, it becomes increasingly challenging to robustly calibrate them to empirical data. History matching with emulation is a calibration method that has been successfully applied to such models, but has not been widely used in epidemiology partly due to the lack of available software. To address this issue, we developed a new, user-friendly R package hmer to simply and efficiently perform history matching with emulation. In this paper, we demonstrate the first use of hmer for calibrating a complex deterministic model for the country-level implementation of tuberculosis vaccines to 115 low- and middle-income countries. The model was fit to 9-13 target measures, by varying 19-22 input parameters. Overall, 105 countries were successfully calibrated. Among the remaining countries, hmer visualisation tools, combined with derivative emulation methods, provided strong evidence that the models were misspecified and could not be calibrated to the target ranges. This work shows that hmer can be used to simply and rapidly calibrate a complex model to data from over 100 countries, making it a useful addition to the epidemiologist's calibration tool-kit.

摘要

传染病模型被流行病学家广泛用于提高对传播动力学和疾病自然史的理解,并预测干预措施的可能效果。然而,随着这些模型的复杂性增加,对其进行稳健的校准变得越来越具有挑战性。仿真历史拟合是一种已成功应用于此类模型的校准方法,但由于缺乏可用的软件,在流行病学中并未得到广泛应用。为了解决这个问题,我们开发了一个新的、用户友好的 R 包 hmer,用于简单高效地进行仿真历史拟合。在本文中,我们首次展示了 hmer 用于校准结核病疫苗在 115 个低收入和中等收入国家实施的复杂确定性模型。该模型通过改变 19-22 个输入参数,拟合了 9-13 个目标指标。总体而言,有 105 个国家成功进行了校准。在其余国家中,hmer 的可视化工具结合导数仿真方法,提供了强有力的证据表明模型存在误定,无法校准到目标范围。这项工作表明,hmer 可以用于简单快速地将复杂模型校准到来自 100 多个国家的数据,这使其成为流行病学家校准工具包的有用补充。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验