Suppr超能文献

忽视自身清除作用是否会影响结核疫苗效果的评估?

Is neglect of self-clearance biasing TB vaccine impact estimates?

机构信息

Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK

Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK.

出版信息

BMJ Glob Health. 2023 Aug;8(8). doi: 10.1136/bmjgh-2023-012799.

Abstract

BACKGROUND

Mathematical modelling has been used extensively to estimate the potential impact of new tuberculosis vaccines, with the majority of existing models assuming that individuals with (Mtb) infection remain at lifelong risk of tuberculosis disease. Recent research provides evidence that self-clearance of Mtb infection may be common, which may affect the potential impact of new vaccines that only take in infected or uninfected individuals. We explored how the inclusion of self-clearance in models of tuberculosis affects the estimates of vaccine impact in China and India.

METHODS

For both countries, we calibrated a tuberculosis model to a scenario without self-clearance and to various scenarios with self-clearance. To account for the current uncertainty in self-clearance properties, we varied the rate of self-clearance, and the level of protection against reinfection in self-cleared individuals. We introduced potential new vaccines in 2025, exploring vaccines that work in uninfected or infected individuals only, or that are effective regardless of infection status, and modelling scenarios with different levels of vaccine efficacy in self-cleared individuals. We then estimated the relative disease incidence reduction in 2050 for each vaccine compared with the no vaccination scenario.

FINDINGS

The inclusion of self-clearance increased the estimated relative reductions in incidence in 2050 for vaccines effective only in uninfected individuals, by a maximum of 12% in China and 8% in India. The inclusion of self-clearance increased the estimated impact of vaccines only effective in infected individuals in some scenarios and decreased it in others, by a maximum of 14% in China and 15% in India. As would be expected, the inclusion of self-clearance had minimal impact on estimated reductions in incidence for vaccines that work regardless of infection status.

INTERPRETATIONS

Our work suggests that the neglect of self-clearance in mathematical models of tuberculosis vaccines does not result in substantially biased estimates of tuberculosis vaccine impact. It may, however, mean that we are slightly underestimating the relative advantages of vaccines that work in uninfected individuals only compared with those that work in infected individuals.

摘要

背景

数学建模已广泛用于估计新结核病疫苗的潜在影响,大多数现有模型假设感染结核菌(Mtb)的个体终生面临结核病发病风险。最近的研究提供了证据表明,Mtb 感染的自我清除可能很常见,这可能会影响仅针对感染或未感染个体的新型疫苗的潜在影响。我们探讨了在结核病模型中纳入自我清除如何影响中国和印度疫苗影响的估计。

方法

对于这两个国家,我们根据没有自我清除的情况和各种自我清除的情况对结核病模型进行了校准。为了说明自我清除特征的当前不确定性,我们改变了自我清除的速度和自我清除个体对再感染的保护水平。我们在 2025 年引入了潜在的新型疫苗,探索了仅在未感染或感染个体中起作用的疫苗,或者无论感染状态如何都有效的疫苗,并对自我清除个体中不同疫苗有效性水平的情况进行了建模。然后,我们估计了与不接种疫苗的情况相比,每种疫苗在 2050 年相对疾病发病率降低的情况。

结果

纳入自我清除使仅对未感染个体有效的疫苗在 2050 年的相对发病率降低估计值增加了最多 12%,在中国;增加了最多 8%,在印度。在某些情况下,纳入自我清除增加了仅对感染个体有效的疫苗的影响,而在其他情况下则降低了这种影响,在中国增加了最多 14%,在印度增加了最多 15%。正如预期的那样,纳入自我清除对无论感染状态如何都有效的疫苗的发病率降低估计值的影响最小。

解释

我们的工作表明,在结核病疫苗的数学模型中忽略自我清除不会导致结核病疫苗影响的估计值产生重大偏差。然而,这可能意味着我们略微低估了仅对未感染个体有效的疫苗相对于对感染个体有效的疫苗的相对优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/873e/10414120/1600d28cb038/bmjgh-2023-012799f03.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验