Department of Computer Science, Yonsei University, Yonsei-ro 50, Seodaemun-gu, 03722, Seoul, Republic of Korea; UBLBio Corporation, Yeongtong-ro 237, Suwon, 16679, Gyeonggi-do, Republic of Korea.
Department of Computer Science, Yonsei University, Yonsei-ro 50, Seodaemun-gu, 03722, Seoul, Republic of Korea; UBLBio Corporation, Yeongtong-ro 237, Suwon, 16679, Gyeonggi-do, Republic of Korea.
Comput Biol Med. 2023 May;157:106721. doi: 10.1016/j.compbiomed.2023.106721. Epub 2023 Feb 28.
The discovery of drugs to selectively remove disease-related cells is challenging in computer-aided drug design. Many studies have proposed multi-objective molecular generation methods and demonstrated their superiority using the public benchmark dataset for kinase inhibitor generation tasks. However, the dataset does not contain many molecules that violate Lipinski's rule of five. Thus, it remains unclear whether existing methods are effective in generating molecules violating the rule, such as navitoclax. To address this, we analysed the limitations of existing methods and propose a multi-objective molecular generation method with a novel parsing algorithm for molecular string representation and a modified reinforcement learning method for the efficient training of multi-objective molecular optimisation. The proposed model had success rates of 84% in GSK3b+JNK3 inhibitor generation and 99% in Bcl-2 family inhibitor generation tasks.
在计算机辅助药物设计中,发现能够选择性去除疾病相关细胞的药物具有挑战性。许多研究提出了多目标分子生成方法,并使用激酶抑制剂生成任务的公共基准数据集证明了它们的优越性。然而,该数据集不包含许多违反 Lipinski 五规则的分子。因此,尚不清楚现有的方法在生成违反规则的分子(如 navitoclax)方面是否有效。为此,我们分析了现有方法的局限性,并提出了一种具有新颖分子字符串表示解析算法的多目标分子生成方法和一种改进的强化学习方法,用于多目标分子优化的有效训练。所提出的模型在 GSK3b+JNK3 抑制剂生成任务中的成功率为 84%,在 Bcl-2 家族抑制剂生成任务中的成功率为 99%。