Park Jinyeong, Ahn Jaegyoon, Choi Jonghwan, Kim Jibum
Department of Computer Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea.
Division of Software, Hallym University, Chuncheon-si, Kangwon-do 24252, Republic of Korea.
J Chem Inf Model. 2025 Mar 10;65(5):2283-2296. doi: 10.1021/acs.jcim.4c01669. Epub 2025 Feb 24.
Optimizing techniques for discovering molecular structures with desired properties is crucial in artificial intelligence (AI)-based drug discovery. Combining deep generative models with reinforcement learning has emerged as an effective strategy for generating molecules with specific properties. Despite its potential, this approach is ineffective in exploring the vast chemical space and optimizing particular chemical properties. To overcome these limitations, we present Mol-AIR, a reinforcement learning-based framework using adaptive intrinsic rewards for effective goal-directed molecular generation. Mol-AIR leverages the strengths of both history-based and learning-based intrinsic rewards by exploiting random distillation network and counting-based strategies. In benchmark tests, Mol-AIR demonstrates improved performance over existing approaches in generating molecules having the desired properties, including penalized LogP, QED, and celecoxib similarity, without any prior knowledge. We believe that Mol-AIR represents a significant advancement in drug discovery, offering a more efficient path to discovering novel therapeutics.
在基于人工智能(AI)的药物发现中,优化用于发现具有所需特性的分子结构的技术至关重要。将深度生成模型与强化学习相结合已成为生成具有特定特性分子的有效策略。尽管具有潜力,但这种方法在探索广阔的化学空间和优化特定化学性质方面效率低下。为克服这些局限性,我们提出了Mol-AIR,这是一个基于强化学习的框架,使用自适应内在奖励来进行有效的目标导向分子生成。Mol-AIR通过利用随机蒸馏网络和基于计数的策略,利用了基于历史和基于学习的内在奖励的优势。在基准测试中,Mol-AIR在生成具有所需特性(包括惩罚后的LogP、QED和塞来昔布相似性)的分子方面,在没有任何先验知识的情况下,表现优于现有方法。我们相信Mol-AIR代表了药物发现的一项重大进展,为发现新型治疗方法提供了一条更有效的途径。