Suppr超能文献

脉络丛的自动分割:在对照组和多发性硬化症患者中的方法和验证。

Automatic segmentation of the choroid plexuses: Method and validation in controls and patients with multiple sclerosis.

机构信息

Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France.

Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France.

出版信息

Neuroimage Clin. 2023;38:103368. doi: 10.1016/j.nicl.2023.103368. Epub 2023 Mar 6.

Abstract

Choroid Plexuses (ChP) are structures located in the ventricles that produce the cerebrospinal fluid (CSF) in the central nervous system. They are also a key component of the blood-CSF barrier. Recent studies have described clinically relevant ChP volumetric changes in several neurological diseases including Alzheimer's, Parkinson's disease, and multiple sclerosis (MS). Therefore, a reliable and automated tool for ChP segmentation on images derived from magnetic resonance imaging (MRI) is a crucial need for large studies attempting to elucidate their role in neurological disorders. Here, we propose a novel automatic method for ChP segmentation in large imaging datasets. The approach is based on a 2-step 3D U-Net to keep preprocessing steps to a minimum for ease of use and to lower memory requirements. The models are trained and validated on a first research cohort including people with MS and healthy subjects. A second validation is also performed on a cohort of pre-symptomatic MS patients having acquired MRIs in routine clinical practice. Our method reaches an average Dice coefficient of 0.72 ± 0.01 with the ground truth and a volume correlation of 0.86 on the first cohort while outperforming FreeSurfer and FastSurfer-based ChP segmentations. On the dataset originating from clinical practice, the method reaches a Dice coefficient of 0.67 ± 0.01 (being close to the inter-rater agreement of 0.64 ± 0.02) and a volume correlation of 0.84. These results demonstrate that this is a suitable and robust method for the segmentation of the ChP both on research and clinical datasets.

摘要

脉络丛(ChP)是位于脑室中的结构,它们在中枢神经系统中产生脑脊液(CSF)。它们也是血脑屏障的关键组成部分。最近的研究描述了几种神经疾病中与临床相关的脉络丛体积变化,包括阿尔茨海默病、帕金森病和多发性硬化症(MS)。因此,对于试图阐明其在神经障碍中的作用的大型研究,需要一种可靠的、自动的基于磁共振成像(MRI)图像的脉络丛分割工具。在这里,我们提出了一种新的用于大型成像数据集的脉络丛自动分割方法。该方法基于两步 3D U-Net,以保持预处理步骤最小化,便于使用和降低内存要求。该模型在包括 MS 患者和健康受试者的第一个研究队列中进行了训练和验证。还在常规临床实践中获得 MRI 的预症状 MS 患者的队列中进行了第二次验证。我们的方法在第一个队列中与地面真实值相比达到了平均 Dice 系数 0.72±0.01,与体积相关性为 0.86,优于 FreeSurfer 和 FastSurfer 为基础的脉络丛分割。在来自临床实践的数据集上,该方法达到了 0.67±0.01 的 Dice 系数(接近 0.64±0.02 的组内一致性)和 0.84 的体积相关性。这些结果表明,这是一种适用于研究和临床数据集的脉络丛分割的可靠方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a34/10011049/f938099e541a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验