Suppr超能文献

基于机器学习分析的碳青霉烯类药物诱导肝损伤风险评估。

Risk evaluation of carbapenem-induced liver injury based on machine learning analysis.

机构信息

Pharmacy, National Hospital Organization Mie Chuo Medical Center, 2158-5 Hisaimyojin, Tsu, Mie, 514-1101, Japan.

Pharmacy, National Hospital Organization Mie Chuo Medical Center, 2158-5 Hisaimyojin, Tsu, Mie, 514-1101, Japan.

出版信息

J Infect Chemother. 2023 Jul;29(7):660-666. doi: 10.1016/j.jiac.2023.03.007. Epub 2023 Mar 11.

Abstract

INTRODUCTION

Information regarding carbapenem-induced liver injury is limited, and the rate of liver injury caused by meropenem (MEPM) and doripenem (DRPM) remains unknown. Decision tree (DT) analysis, a machine learning method, has a flowchart-like model where users can easily predict the risk of liver injury. Thus, we aimed to compare the rate of liver injury between MEPM and DRPM and construct a flowchart that can be used to predict carbapenem-induced liver injury.

METHODS

We investigated patients treated with MEPM (n = 310) or DRPM (n = 320) and confirmed liver injury as the primary outcome. We used a chi-square automatic interaction detection algorithm to construct DT models. The dependent variable was set as liver injury from a carbapenem (MEPM or DRPM), and factors including alanine aminotransferase (ALT), albumin-bilirubin (ALBI) score, and concomitant use of acetaminophen were used as explanatory variables.

RESULTS

The rates of liver injury were 22.9% (71/310) and 17.5% (56/320) in the MEPM and DRPM groups, respectively; no significant differences in the rate were observed (95% confidence interval: 0.710-1.017). Although the DT model of MEPM could not be constructed, DT analysis showed that the incidence of introducing DRPM in patients with ALT >22 IU/L and ALBI scores > -1.87 might be high-risk.

CONCLUSIONS

The risk of developing liver injury did not differ significantly between the MEPM and DRPM groups. Since ALT and ALBI score are evaluated in clinical settings, this DT model is convenient and potentially useful for medical staff in assessing liver injury before DRPM administration.

摘要

简介

有关碳青霉烯类药物引起的肝损伤的信息有限,美罗培南(MEPM)和多利培南(DRPM)引起肝损伤的发生率尚不清楚。决策树(DT)分析是一种机器学习方法,具有流程图模型,用户可以轻松预测肝损伤的风险。因此,我们旨在比较 MEPM 和 DRPM 引起的肝损伤发生率,并构建可用于预测碳青霉烯类药物引起肝损伤的流程图。

方法

我们调查了接受 MEPM(n=310)或 DRPM(n=320)治疗并确认为肝损伤的患者,将其作为主要结局。我们使用卡方自动交互检测算法构建 DT 模型。因变量设为 MEPM 或 DRPM 引起的肝损伤,将丙氨酸氨基转移酶(ALT)、白蛋白-胆红素(ALBI)评分和同时使用对乙酰氨基酚等因素作为解释变量。

结果

MEPM 和 DRPM 组的肝损伤发生率分别为 22.9%(71/310)和 17.5%(56/320),差异无统计学意义(95%置信区间:0.710-1.017)。虽然无法构建 MEPM 的 DT 模型,但 DT 分析显示,ALT>22IU/L 和 ALBI 评分>-1.87的患者引入 DRPM 的发生率可能较高。

结论

MEPM 和 DRPM 组发生肝损伤的风险无显著差异。由于 ALT 和 ALBI 评分在临床环境中进行评估,因此该 DT 模型对于医务人员在给予 DRPM 前评估肝损伤具有便捷性和潜在的实用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验