Hu Qiaozhi, Li Xiaoqi, Zou Dan, He Zhiyao, Xu Ting
Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
West China School of Medicine, Sichuan University, Chengdu, Sichuan, China.
Front Pharmacol. 2025 May 20;16:1603089. doi: 10.3389/fphar.2025.1603089. eCollection 2025.
Drug-induced liver injury (DILI) is a significant adverse drug reaction, ranging from mild liver enzyme elevations to severe outcomes such as liver failure, transplantation, or death. This condition is especially concerning in older adults, who may exhibit increased susceptibility to adverse medication effects. This study aimed to develop and compare eight machine learning (ML) models using routine clinical, pharmacological, and laboratory data to predict DILI in older hospitalized patients.
We conducted a retrospective analysis of older patients hospitalized in 2022 who exhibited abnormal liver function tests. A total of 421 clinical, pharmacological, and laboratory variables were utilized for model development, with missing data addressed through multiple imputation techniques. The performance of 8 ML algorithms-XGBoost, LightGBM, Random Forest, AdaBoost, CatBoost, Gradient Boosting Decision Trees, Artificial Neural Network, and TabNet-was assessed. The dataset was randomly partitioned into a training set (80%, n = 2,880) and an independent testing set (20%, n = 720). Model performance was evaluated using the area under the receiver operating characteristic curve (AUC).
Out of the 3,600 older patients with abnormal liver function, 654 patients experienced DILI. The best-performing model, LightGBM combined with Random Forest imputation, achieved an AUC of 0.9829. SHapley Additive exPlanations (SHAP) analysis identified critical predictors for DILI, including the timing of DILI relative to surgery, undergoing surgery, and maximum rate of change (slope) in liver enzymes, albumin, lipoprotein cholesterol, total bilirubin, proBNP, and total bile acids. Additional significant factors included administration of liver-protective medications upon admission; use of diuretics, antibiotics, and narcotic analgesics; and pre-existing liver or gallbladder diseases or malignancies.
The predictive model developed demonstrated excellent performance in identifying DILI in older adults. Leveraging machine learning techniques, this model holds significant potential for clinical implementation to effectively warn clinicians of DILI risk among older hospitalized patients.
药物性肝损伤(DILI)是一种严重的药物不良反应,范围从轻度肝酶升高到严重后果,如肝衰竭、肝移植或死亡。这种情况在老年人中尤为令人担忧,他们可能对药物不良反应表现出更高的易感性。本研究旨在开发并比较八个使用常规临床、药理学和实验室数据的机器学习(ML)模型,以预测老年住院患者的DILI。
我们对2022年住院的肝功能检查异常的老年患者进行了回顾性分析。总共421个临床、药理学和实验室变量用于模型开发,通过多重插补技术处理缺失数据。评估了8种ML算法——XGBoost、LightGBM、随机森林、AdaBoost、CatBoost、梯度提升决策树、人工神经网络和TabNet的性能。数据集被随机分为训练集(80%,n = 2880)和独立测试集(20%,n = 720)。使用受试者操作特征曲线下面积(AUC)评估模型性能。
在3600名肝功能异常的老年患者中,654名患者发生了DILI。表现最佳的模型,即LightGBM与随机森林插补相结合,AUC达到0.9829。SHapley值相加解释(SHAP)分析确定了DILI的关键预测因素,包括DILI相对于手术的时间、接受手术情况,以及肝酶、白蛋白、脂蛋白胆固醇、总胆红素、脑钠肽和总胆汁酸的最大变化率(斜率)。其他重要因素包括入院时使用肝脏保护药物;使用利尿剂、抗生素和麻醉性镇痛药;以及既往存在的肝脏或胆囊疾病或恶性肿瘤。
所开发的预测模型在识别老年人DILI方面表现出优异的性能。利用机器学习技术,该模型在临床应用中具有巨大潜力,可有效警告临床医生老年住院患者中的DILI风险。