Suppr超能文献

III 期、双臂、多中心、开放性标签、平行组随机设计临床研究,旨在使用个性化早期预警决策支持系统预测和预防慢性阻塞性肺疾病急性加重:'Predict & Prevent AECOPD' - 研究方案。

Phase III, two arm, multi-centre, open label, parallel-group randomised designed clinical investigation of the use of a personalised early warning decision support system to predict and prevent acute exacerbations of chronic obstructive pulmonary disease: 'Predict & Prevent AECOPD' - study protocol.

机构信息

Warwick Clinical Trials Unit (BWCTU), Warwick Medical School University of Warwick Coventry, Coventry, UK

Birmingham Clinical Trials Unit (BCTU), Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.

出版信息

BMJ Open. 2023 Mar 13;13(3):e061050. doi: 10.1136/bmjopen-2022-061050.

Abstract

INTRODUCTION

With 65 million cases globally, chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death and imposes a heavy burden on patients' lives and healthcare resources worldwide. Around half of all patients with COPD have frequent (≥2 per year) acute exacerbations of COPD (AECOPD). Rapid readmissions are also common. Exacerbations impact significantly on COPD outcomes, causing significant lung function decline. Prompt exacerbation management optimises recovery and delays the time to the next acute episode.

METHODS/ANALYSIS: The Predict & Prevent AECOPD trial is a phase III, two arm, multi-centre, open label, parallel-group individually randomised clinical trial investigating the use of a personalised early warning decision support system (COPDPredict) to predict and prevent AECOPD. We aim to recruit 384 participants and randomise each individual in a 1:1 ratio to either standard self-management plans with rescue medication (RM) (control arm) or COPDPredict with RM (intervention arm).The trial will inform the future standard of care regarding management of exacerbations in COPD patients. The main outcome measure is to provide further validation, as compared with usual care, for the clinical effectiveness of COPDPredict to help guide and support COPD patients and their respective clinical teams in identifying exacerbations early, with an aim to reduce the total number of AECOPD-induced hospital admissions in the 12 months following each patient's randomisation.

ETHICS AND DISSEMINATION

This study protocol is reported in accordance with the guidance set out in the Standard Protocol Items: Recommendations for Interventional Trials statement. Predict & Prevent AECOPD has obtained ethical approval in England (19/LO/1939). On completion of the trial and publication of results a lay findings summary will be disseminated to trial participants.

TRIAL REGISTRATION NUMBER

NCT04136418.

摘要

简介

全球有 6500 万例慢性阻塞性肺疾病(COPD)患者,该病是全球第四大致死原因,给患者的生活和全球医疗资源带来了沉重负担。大约一半的 COPD 患者每年有 2 次或以上的 COPD 急性加重(AECOPD)。快速再次入院也很常见。加重对 COPD 结局有重大影响,导致显著的肺功能下降。及时治疗可优化康复效果并延迟下一次急性发作时间。

方法/分析:Predict & Prevent AECOPD 试验是一项 III 期、两臂、多中心、开放性、平行组、个体随机临床试验,旨在研究使用个人化早期预警决策支持系统(COPDPredict)预测和预防 AECOPD。我们旨在招募 384 名参与者,并以 1:1 的比例将每位患者随机分配至标准自我管理计划加抢救药物(RM)(对照组)或 COPDPredict 加 RM(干预组)。该试验将为 COPD 患者的管理提供未来的标准治疗方法。主要结局是与常规护理相比,进一步验证 COPDPredict 在 COPD 患者管理中的临床有效性,以帮助指导和支持 COPD 患者及其各自的临床团队早期识别加重,目标是减少每位患者随机分组后 12 个月内因 AECOPD 导致的住院总数。

伦理和传播

本研究方案按照《干预性试验标准建议报告条目》的指导原则进行报告。Predict & Prevent AECOPD 已在英格兰获得伦理批准(19/LO/1939)。试验完成后和结果发表后,将向试验参与者传播一份通俗易懂的研究结果概要。

临床试验注册号

NCT04136418。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7a9/10016266/66d673ab32fe/bmjopen-2022-061050f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验