Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
Transl Psychiatry. 2023 Mar 13;13(1):92. doi: 10.1038/s41398-023-02393-7.
Schizophrenia is a heterogeneous psychiatric disorder with a strong genetic basis, whose etiology and pathophysiology remain poorly understood. Exome sequencing studies have uncovered rare, loss-of-function variants that greatly increase risk of schizophrenia [1], including loss-of-function mutations in GRIN2A (aka GluN2A or NR2A, encoding the NMDA receptor subunit 2A) and AKAP11 (A-Kinase Anchoring Protein 11). AKAP11 and GRIN2A mutations are also associated with bipolar disorder [2], and epilepsy and developmental delay/intellectual disability [1, 3, 4], respectively. Accessible in both humans and rodents, electroencephalogram (EEG) recordings offer a window into brain activity and display abnormal features in schizophrenia patients. Does loss of Grin2a or Akap11 in mice also result in EEG abnormalities? We monitored EEG in heterozygous and homozygous knockout Grin2a and Akap11 mutant mice compared with their wild-type littermates, at 3- and 6-months of age, across the sleep/wake cycle and during auditory stimulation protocols. Grin2a and Akap11 mutants exhibited increased resting gamma power, attenuated auditory steady-state responses (ASSR) at gamma frequencies, and reduced responses to unexpected auditory stimuli during mismatch negativity (MMN) tests. Sleep spindle density was reduced in a gene dose-dependent manner in Akap11 mutants, whereas Grin2a mutants showed increased sleep spindle density. The EEG phenotypes of Grin2a and Akap11 mutant mice show a variety of abnormal features that overlap considerably with human schizophrenia patients, reflecting systems-level changes caused by Grin2a and Akap11 deficiency. These neurophysiologic findings further substantiate Grin2a and Akap11 mutants as genetic models of schizophrenia and identify potential biomarkers for stratification of schizophrenia patients.
精神分裂症是一种具有强烈遗传基础的异质性精神障碍,其病因和发病机制仍知之甚少。外显子组测序研究发现了罕见的、功能丧失的变异,这些变异极大地增加了精神分裂症的风险[1],包括 GRIN2A(又名 GluN2A 或 NR2A,编码 NMDA 受体亚单位 2A)和 AKAP11(A-激酶锚定蛋白 11)的功能丧失突变。AKAP11 和 GRIN2A 突变也与双相情感障碍[2]有关,分别与癫痫和发育迟缓/智力障碍[1,3,4]有关。脑电图(EEG)记录在人类和啮齿动物中都可以获得,它提供了一个了解大脑活动的窗口,并显示出精神分裂症患者的异常特征。在小鼠中 Grin2a 或 Akap11 的缺失是否也会导致 EEG 异常?我们在 3 至 6 个月大的杂合子和纯合子 Grin2a 和 Akap11 突变小鼠及其野生型同窝仔鼠中监测 EEG,横跨睡眠/觉醒周期,并在听觉刺激协议期间进行监测。Grin2a 和 Akap11 突变体表现出静息伽马功率增加,伽马频率的听觉稳态反应(ASSR)减弱,以及在失匹配负波(MMN)测试中对意外听觉刺激的反应减少。Akap11 突变体的基因剂量依赖性地减少了睡眠纺锤波密度,而 Grin2a 突变体则表现出增加的睡眠纺锤波密度。Grin2a 和 Akap11 突变小鼠的 EEG 表型表现出多种异常特征,与人类精神分裂症患者有很大的重叠,反映了由 Grin2a 和 Akap11 缺乏引起的系统水平变化。这些神经生理发现进一步证实了 Grin2a 和 Akap11 突变体是精神分裂症的遗传模型,并确定了精神分裂症患者分层的潜在生物标志物。