Suppr超能文献

重新探讨人类基因组中非 B DNA 基序的诱变作用。

Revisiting mutagenesis at non-B DNA motifs in the human genome.

机构信息

Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.

Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.

出版信息

Nat Struct Mol Biol. 2023 Apr;30(4):417-424. doi: 10.1038/s41594-023-00936-6. Epub 2023 Mar 13.

Abstract

Non-B DNA structures formed by repetitive sequence motifs are known instigators of mutagenesis in experimental systems. Analyzing this phenomenon computationally in the human genome requires careful disentangling of intrinsic confounding factors, including overlapping and interrupted motifs and recurrent sequencing errors. Here, we show that accounting for these factors eliminates all signals of repeat-induced mutagenesis that extend beyond the motif boundary, and eliminates or dramatically shrinks the magnitude of mutagenesis within some motifs, contradicting previous reports. Mutagenesis not attributable to artifacts revealed several biological mechanisms. Polymerase slippage generates frequent indels within every variety of short tandem repeat motif, implicating slipped-strand structures. Interruption-correcting single nucleotide variants within short tandem repeats may originate from error-prone polymerases. Secondary-structure formation promotes single nucleotide variants within palindromic repeats and duplications within direct repeats. G-quadruplex motifs cause recurrent sequencing errors, whereas mutagenesis at Z-DNAs is conspicuously absent.

摘要

由重复序列模体形成的非 B-DNA 结构已知是实验系统中诱变的引发因素。在人类基因组中通过计算分析这种现象需要仔细区分内在的混杂因素,包括重叠和中断的模体以及反复出现的测序错误。在这里,我们表明,考虑到这些因素,会消除所有超出模体边界的重复诱导突变的信号,并消除或大大缩小一些模体内部的突变程度,这与之前的报告相矛盾。不能归因于伪影的突变揭示了几种生物学机制。聚合酶滑动在每一种短串联重复模体中产生频繁的插入缺失,暗示存在滑动链结构。短串联重复内中断校正的单核苷酸变体可能来自易错聚合酶。二级结构形成促进了回文重复内的单核苷酸变体和直接重复内的重复。G-四链体模体导致反复出现的测序错误,而 Z-DNA 中的突变则明显不存在。

相似文献

1
Revisiting mutagenesis at non-B DNA motifs in the human genome.
Nat Struct Mol Biol. 2023 Apr;30(4):417-424. doi: 10.1038/s41594-023-00936-6. Epub 2023 Mar 13.
3
Fragile DNA motifs trigger mutagenesis at distant chromosomal loci in saccharomyces cerevisiae.
PLoS Genet. 2013 Jun;9(6):e1003551. doi: 10.1371/journal.pgen.1003551. Epub 2013 Jun 13.
4
Accurate sequencing of DNA motifs able to form alternative (non-B) structures.
Genome Res. 2023 Jun;33(6):907-922. doi: 10.1101/gr.277490.122. Epub 2023 Jul 11.
5
DNA polymerase kappa microsatellite synthesis: two distinct mechanisms of slippage-mediated errors.
Environ Mol Mutagen. 2012 Dec;53(9):787-96. doi: 10.1002/em.21721. Epub 2012 Sep 11.
6
APOBEC mutagenesis is low in most types of non-B DNA structures.
iScience. 2022 Jun 6;25(7):104535. doi: 10.1016/j.isci.2022.104535. eCollection 2022 Jul 15.
7
Telomeric repeat mutagenicity in human somatic cells is modulated by repeat orientation and G-quadruplex stability.
DNA Repair (Amst). 2010 Nov 10;9(11):1119-29. doi: 10.1016/j.dnarep.2010.07.014. Epub 2010 Aug 25.
8
Non-B DB v2.0: a database of predicted non-B DNA-forming motifs and its associated tools.
Nucleic Acids Res. 2013 Jan;41(Database issue):D94-D100. doi: 10.1093/nar/gks955. Epub 2012 Nov 3.
9
Computational analysis on the dissemination of non-B DNA structural motifs in promoter regions of 1180 cellular genomes.
Biochimie. 2023 Nov;214(Pt A):101-111. doi: 10.1016/j.biochi.2023.06.002. Epub 2023 Jun 11.
10
Searching for non-B DNA-forming motifs using nBMST (non-B DNA motif search tool).
Curr Protoc Hum Genet. 2012 Apr;Chapter 18:Unit 18.7.1-22. doi: 10.1002/0471142905.hg1807s73.

引用本文的文献

2
The origin of mirror repeats in the human genome.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf619.
3
Non-canonical DNA in human and other ape telomere-to-telomere genomes.
Nucleic Acids Res. 2025 Apr 10;53(7). doi: 10.1093/nar/gkaf298.
4
Flipons enable genomes to learn by intermediating the exchange of energy for information.
J R Soc Interface. 2025 Mar;22(224):20250049. doi: 10.1098/rsif.2025.0049. Epub 2025 Mar 26.
5
Z-form DNA-RNA hybrid blocks DNA replication.
Nucleic Acids Res. 2025 Feb 27;53(5). doi: 10.1093/nar/gkaf135.
6
Inherent instability of simple DNA repeats shapes an evolutionarily stable distribution of repeat lengths.
bioRxiv. 2025 Jan 10:2025.01.09.631797. doi: 10.1101/2025.01.09.631797.
7
Triplex H-DNA structure: the long and winding road from the discovery to its role in human disease.
NAR Mol Med. 2024 Dec 5;1(4):ugae024. doi: 10.1093/narmme/ugae024. eCollection 2024 Oct.
8
Non-canonical DNA in human and other ape telomere-to-telomere genomes.
bioRxiv. 2025 Mar 8:2024.09.02.610891. doi: 10.1101/2024.09.02.610891.
9
Pathogenic CANVAS (AAGGG)n repeats stall DNA replication due to the formation of alternative DNA structures.
Nucleic Acids Res. 2024 May 8;52(8):4361-4374. doi: 10.1093/nar/gkae124.

本文引用的文献

1
Z-DNA is remodelled by ZBTB43 in prospermatogonia to safeguard the germline genome and epigenome.
Nat Cell Biol. 2022 Jul;24(7):1141-1153. doi: 10.1038/s41556-022-00941-9. Epub 2022 Jul 4.
2
Temporally distinct post-replicative repair mechanisms fill PRIMPOL-dependent ssDNA gaps in human cells.
Mol Cell. 2021 Oct 7;81(19):4026-4040.e8. doi: 10.1016/j.molcel.2021.09.013.
3
Population sequencing data reveal a compendium of mutational processes in the human germ line.
Science. 2021 Aug 27;373(6558):1030-1035. doi: 10.1126/science.aba7408. Epub 2021 Aug 12.
4
Selection and thermostability suggest G-quadruplexes are novel functional elements of the human genome.
Genome Res. 2021 Jul;31(7):1136-1149. doi: 10.1101/gr.269589.120. Epub 2021 Jun 29.
5
Repair of DNA Breaks by Break-Induced Replication.
Annu Rev Biochem. 2021 Jun 20;90:165-191. doi: 10.1146/annurev-biochem-081420-095551. Epub 2021 Apr 1.
6
Short-range template switching in great ape genomes explored using pair hidden Markov models.
PLoS Genet. 2021 Mar 2;17(3):e1009221. doi: 10.1371/journal.pgen.1009221. eCollection 2021 Mar.
8
Differences between germline genomes of monozygotic twins.
Nat Genet. 2021 Jan;53(1):27-34. doi: 10.1038/s41588-020-00755-1. Epub 2021 Jan 7.
9
Replication stress at microsatellites causes DNA double-strand breaks and break-induced replication.
J Biol Chem. 2020 Nov 6;295(45):15378-15397. doi: 10.1074/jbc.RA120.013495. Epub 2020 Sep 1.
10
DNA polymerase stalling at structured DNA constrains the expansion of short tandem repeats.
Genome Biol. 2020 Aug 21;21(1):209. doi: 10.1186/s13059-020-02124-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验