Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
Institute for Refractory Cancer Research, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea.
Genome Med. 2023 Mar 13;15(1):16. doi: 10.1186/s13073-023-01165-8.
Although temozolomide (TMZ) has been used as a standard adjuvant chemotherapeutic agent for primary glioblastoma (GBM), treating isocitrate dehydrogenase wild-type (IDH-wt) cases remains challenging due to intrinsic and acquired drug resistance. Therefore, elucidation of the molecular mechanisms of TMZ resistance is critical for its precision application.
We stratified 69 primary IDH-wt GBM patients into TMZ-resistant (n = 29) and sensitive (n = 40) groups, using TMZ screening of the corresponding patient-derived glioma stem-like cells (GSCs). Genomic and transcriptomic features were then examined to identify TMZ-associated molecular alterations. Subsequently, we developed a machine learning (ML) model to predict TMZ response from combined signatures. Moreover, TMZ response in multisector samples (52 tumor sectors from 18 cases) was evaluated to validate findings and investigate the impact of intra-tumoral heterogeneity on TMZ efficacy.
In vitro TMZ sensitivity of patient-derived GSCs classified patients into groups with different survival outcomes (P = 1.12e-4 for progression-free survival (PFS) and 3.63e-4 for overall survival (OS)). Moreover, we found that elevated gene expression of EGR4, PAPPA, LRRC3, and ANXA3 was associated to intrinsic TMZ resistance. In addition, other features such as 5-aminolevulinic acid negative, mesenchymal/proneural expression subtypes, and hypermutation phenomena were prone to promote TMZ resistance. In contrast, concurrent copy-number-alteration in PTEN, EGFR, and CDKN2A/B was more frequent in TMZ-sensitive samples (Fisher's exact P = 0.0102), subsequently consolidated by multi-sector sequencing analyses. Integrating all features, we trained a ML tool to segregate TMZ-resistant and sensitive groups. Notably, our method segregated IDH-wt GBM patients from The Cancer Genome Atlas (TCGA) into two groups with divergent survival outcomes (P = 4.58e-4 for PFS and 3.66e-4 for OS). Furthermore, we showed a highly heterogeneous TMZ-response pattern within each GBM patient using in vitro TMZ screening and genomic characterization of multisector GSCs. Lastly, the prediction model that evaluates the TMZ efficacy for primary IDH-wt GBMs was developed into a webserver for public usage ( http://www.wang-lab-hkust.com:3838/TMZEP ).
We identified molecular characteristics associated to TMZ sensitivity, and illustrate the potential clinical value of a ML model trained from pharmacogenomic profiling of patient-derived GSC against IDH-wt GBMs.
替莫唑胺(TMZ)已被用作原发性胶质母细胞瘤(GBM)的标准辅助化疗药物,但由于内在和获得性药物耐药性,治疗异柠檬酸脱氢酶野生型(IDH-wt)病例仍然具有挑战性。因此,阐明 TMZ 耐药的分子机制对于其精确应用至关重要。
我们使用相应患者来源的神经胶质瘤干细胞(GSCs)的 TMZ 筛选,将 69 名原发性 IDH-wt GBM 患者分为 TMZ 耐药(n=29)和敏感(n=40)组。然后,我们检查了基因组和转录组特征,以确定与 TMZ 相关的分子改变。随后,我们开发了一种机器学习(ML)模型,从组合特征预测 TMZ 反应。此外,评估了多区域样本(18 例中的 52 个肿瘤区域)中的 TMZ 反应,以验证发现并研究肿瘤内异质性对 TMZ 疗效的影响。
体外 TMZ 敏感性的患者来源 GSCs 将患者分为具有不同生存结果的组(无进展生存期(PFS)为 1.12e-4,总生存期(OS)为 3.63e-4)。此外,我们发现 EGR4、PAPPA、LRRC3 和 ANXA3 的基因表达升高与内在 TMZ 耐药有关。此外,其他特征,如 5-氨基乙酰丙酸阴性、间充质/倾向于神经表达亚型和高突变现象,更容易促进 TMZ 耐药。相反,PTEN、EGFR 和 CDKN2A/B 的同时拷贝数改变在 TMZ 敏感样本中更为频繁(Fisher's exact P=0.0102),随后通过多区域测序分析得到证实。整合所有特征后,我们训练了一个 ML 工具来分离 TMZ 耐药和敏感组。值得注意的是,我们的方法将来自癌症基因组图谱(TCGA)的 IDH-wt GBM 患者分为具有不同生存结果的两组(PFS 为 4.58e-4,OS 为 3.66e-4)。此外,我们使用体外 TMZ 筛选和多区域 GSCs 的基因组特征,显示了每个 GBM 患者内高度异质的 TMZ 反应模式。最后,我们开发了一个用于评估原发性 IDH-wt GBM 中 TMZ 疗效的预测模型,并将其构建为一个用于公众使用的网络服务器(http://www.wang-lab-hkust.com:3838/TMZEP)。
我们确定了与 TMZ 敏感性相关的分子特征,并说明了从患者来源的 GSC 的药物基因组分析中训练的 ML 模型在 IDH-wt GBM 中的潜在临床价值。