Suppr超能文献

基于深度学习的图像重建用于低剂量胸部计算机断层扫描协议的辐射剂量降低:一项体模研究。

Radiation dose reduction using deep learning-based image reconstruction for a low-dose chest computed tomography protocol: a phantom study.

作者信息

Jung Yunsub, Hur Jin, Han Kyunghwa, Imai Yasuhiro, Hong Yoo Jin, Im Dong Jin, Lee Kye Ho, Desnoyers Melissa, Thomsen Brian, Shigemasa Risa, Um Kyounga, Jang Kyungeun

机构信息

Research Team, GE Healthcare Korea, Seoul, Republic of Korea.

Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.

出版信息

Quant Imaging Med Surg. 2023 Mar 1;13(3):1937-1947. doi: 10.21037/qims-22-618. Epub 2023 Feb 1.

Abstract

BACKGROUND

The aim of this study was to compare the dose reduction potential and image quality of deep learning-based image reconstruction (DLIR) with those of filtered back-projection (FBP) and iterative reconstruction (IR) and to determine the clinically usable dose of DLIR for low-dose chest computed tomography (LDCT) scans.

METHODS

Multi-slice computed tomography (CT) scans of a chest phantom were performed with various tube voltages and tube currents, and the images were reconstructed using seven methods to control the amount of noise reduction: FBP, three stages of IR, and three stages of DLIR. For subjective image analysis, four radiologists compared 48 image data sets with reference images and rated on a 5-point scale. For quantitative image analysis, the signal to noise ratio (SNR), contrast to noise ratio (CNR), nodule volume, and nodule diameter were measured.

RESULTS

In the subjective analysis, DLIR-Low (0.46 mGy), DLIR-Medium (0.31 mGy), and DLIR-High (0.18 mGy) images showed similar quality to the FBP (2.47 mGy) image. Under the same dose conditions, the SNR and CNR were higher with DLIR-High than with FBP and all the IR methods (all P<0.05). The nodule volume and size with DLIR-High were significantly closer to the real volume than with FBP and all the IR methods (all P<0.001).

CONCLUSIONS

DLIR can improve the image quality of LDCT compared to FBP and IR. In addition, the appropriate effective dose for LDCT would be 0.24 mGy with DLIR-High.

摘要

背景

本研究的目的是比较基于深度学习的图像重建(DLIR)与滤波反投影(FBP)和迭代重建(IR)的剂量降低潜力和图像质量,并确定用于低剂量胸部计算机断层扫描(LDCT)的DLIR的临床可用剂量。

方法

使用不同的管电压和管电流对胸部体模进行多层计算机断层扫描(CT),并使用七种方法重建图像以控制降噪量:FBP、三个阶段的IR和三个阶段的DLIR。对于主观图像分析,四名放射科医生将48个图像数据集与参考图像进行比较,并采用5分制进行评分。对于定量图像分析,测量信噪比(SNR)、对比噪声比(CNR)、结节体积和结节直径。

结果

在主观分析中,DLIR-低剂量(0.46 mGy)、DLIR-中等剂量(0.31 mGy)和DLIR-高剂量(0.18 mGy)图像显示出与FBP(2.47 mGy)图像相似的质量。在相同剂量条件下,DLIR-高剂量的SNR和CNR高于FBP和所有IR方法(所有P<0.05)。与FBP和所有IR方法相比,DLIR-高剂量的结节体积和大小明显更接近真实体积(所有P<0.001)。

结论

与FBP和IR相比,DLIR可以提高LDCT的图像质量。此外,DLIR-高剂量时LDCT的合适有效剂量为0.24 mGy。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c480/10006148/14c1d9f0b8b5/qims-13-03-1937-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验