Suppr超能文献

用于评估新辅助治疗的HER2低表达乳腺癌预后模型的开发与验证

Development and validation of a prognostic model for HER2-low breast cancer to evaluate neoadjuvant therapy.

作者信息

Li Xiaoping, Lin Zhiquan, Yu Qihe, Qiu Chaoran, Lai Chan, Huang Hui, Zhang Yiwen, Zhang Weibin, Zhu Jintao, Huang Xin, Li Weiwen

机构信息

Department of Breast, Jiangmen Central Hospital, Jiangmen, China.

Wuyi University, Faculty of Intelligent Manufacturing, Jiangmen, China.

出版信息

Gland Surg. 2023 Feb 28;12(2):183-196. doi: 10.21037/gs-22-729. Epub 2023 Feb 15.

Abstract

BACKGROUND

Human epidermal growth factor receptor 2 (HER2) low breast cancer (BC) accounts for 30-51% of all BCs. How to precisely assess the response to neoadjuvant therapy in this heterogenous tumor is currently unanswered. With the advance in multi-omics, refining the molecular subtyping other than the current hormone receptor (HR)-based subtyping to guide the neoadjuvant therapy for HER2-low BC is potentially feasible.

METHODS

The messenger RNA (mRNA), clinical, and pathological data of all HER2-low BC patients (n=368) from the Neoadjuvant I-SPY2 Trial, were retrieved. Ninety-eight patients achieved pathological complete response (pCR) were randomly divided into the training and validation sets with 8:2 ratio. The non-pCR cases were corporated into the above datasets with 1:1 ratio. The rest non-pCR cases were served as the test set. Random forest (RF), support vector machine (SVM), and fully connected neural network (FCNN) were applied to establish a 1-dimensional (1D) model based on mRNA data. The method with best prediction value among the 3 models was selected for further modeling when combining pathological features. A new classification of deep learning (CDn) was proposed based on a multi-omics model. After identifying pCR-related features by the integral gradient and unsupervised hierarchical clustering method, the responses to neoadjuvant therapy associated with these features across different subgroups were analyzed.

RESULTS

Compared with the RF and SVM models, the FCNN model achieved the best performance [area under the curve (AUC): 0.89] based on the mRNA feature. By combining mRNA and pathological features, the FCNN model proposed 2 new subtypes including CD1 and CD0 for HER2-low BC. CD1 increased the sensitivity to predict pCR by 23.5% [to 87.8%; 95% confidence interval (CI): 78% to 94%] and improved the specificity to pCR by 12.2% (to 77.4%; 95% CI: 69% to 87%) when comparing with the current HR classification for HER2-low BC.

CONCLUSIONS

The new typing method (CD1 and CD0) proposed in this study achieved excellent performance for predicting the pCR to neoadjuvant therapy in HER2-low BC. The patients who were not sensitive to neoadjuvant therapy according to multi-omics models might receive surgical treatment directly.

摘要

背景

人表皮生长因子受体2(HER2)低表达乳腺癌(BC)占所有乳腺癌的30%-51%。目前,如何精确评估这种异质性肿瘤对新辅助治疗的反应尚无定论。随着多组学技术的发展,完善当前基于激素受体(HR)的分子亚型分类,以指导HER2低表达乳腺癌的新辅助治疗具有潜在可行性。

方法

从新辅助I-SPY2试验中检索所有HER2低表达乳腺癌患者(n=368)的信使核糖核酸(mRNA)、临床和病理数据。98例达到病理完全缓解(pCR)的患者按8:2的比例随机分为训练集和验证集。非pCR病例按1:1的比例纳入上述数据集。其余非pCR病例作为测试集。应用随机森林(RF)、支持向量机(SVM)和全连接神经网络(FCNN)基于mRNA数据建立一维(1D)模型。在结合病理特征时,从这3种模型中选择预测价值最佳的方法进行进一步建模。基于多组学模型提出了一种新的深度学习分类法(CDn)。通过积分梯度和无监督层次聚类方法识别pCR相关特征后,分析了不同亚组中与这些特征相关的新辅助治疗反应。

结果

与RF和SVM模型相比,基于mRNA特征的FCNN模型表现最佳[曲线下面积(AUC):0.89]。通过结合mRNA和病理特征,FCNN模型为HER2低表达乳腺癌提出了2种新亚型,即CD1和CD0。与当前HER2低表达乳腺癌的HR分类相比,CD1预测pCR的敏感性提高了23.5%[至87.8%;95%置信区间(CI):78%至94%],对pCR的特异性提高了12.2%(至77.4%;95%CI:69%至87%)。

结论

本研究提出的新分型方法(CD1和CD0)在预测HER2低表达乳腺癌新辅助治疗的pCR方面表现优异。根据多组学模型对新辅助治疗不敏感的患者可能直接接受手术治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ff3/10005989/97736832a630/gs-12-02-183-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验