Suppr超能文献

高耐久性碳基钙钛矿光伏器件中的空穴传输材料工程

Hole-Transport Material Engineering in Highly Durable Carbon-Based Perovskite Photovoltaic Devices.

作者信息

Rahighi Reza, Gholipour Somayeh, Amin Mohammed A, Ansari Mohd Zahid

机构信息

SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.

Adolphe Merkle Institute, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland.

出版信息

Nanomaterials (Basel). 2023 Apr 20;13(8):1417. doi: 10.3390/nano13081417.

Abstract

Despite the fast-developing momentum of perovskite solar cells (PSCs) toward flexible roll-to-roll solar energy harvesting panels, their long-term stability remains to be the challenging obstacle in terms of moisture, light sensitivity, and thermal stress. Compositional engineering including less usage of volatile methylammonium bromide (MABr) and incorporating more formamidinium iodide (FAI) promises more phase stability. In this work, an embedded carbon cloth in carbon paste is utilized as the back contact in PSCs (having optimized perovskite composition), resulting in a high power conversion efficiency (PCE) of 15.4%, and the as-fabricated devices retain 60% of the initial PCE after more than 180 h (at the experiment temperature of 85 °C and under 40% relative humidity). These results are from devices without any encapsulation or light soaking pre-treatments, whereas Au-based PSCs retain 45% of the initial PCE at the same conditions with rapid degradation. In addition, the long-term device stability results reveal that poly[bis(4-phenyl) (2,4,6-trimethylphenyl) amine] (PTAA) is a more stable polymeric hole-transport material (HTM) at the 85 °C thermal stress than the copper thiocyanate (CuSCN) inorganic HTM for carbon-based devices. These results pave the way toward modifying additive-free and polymeric HTM for scalable carbon-based PSCs.

摘要

尽管钙钛矿太阳能电池(PSC)在朝着柔性卷对卷太阳能收集面板方向快速发展,但其长期稳定性在湿度、光敏感性和热应力方面仍是一个具有挑战性的障碍。包括减少挥发性溴化甲铵(MABr)的使用以及掺入更多碘化甲脒(FAI)在内的成分工程有望实现更高的相稳定性。在这项工作中,碳糊中嵌入的碳布被用作PSC(具有优化的钙钛矿成分)的背接触,从而实现了15.4%的高功率转换效率(PCE),并且所制备的器件在超过180小时后(在85°C的实验温度和40%的相对湿度下)仍保留初始PCE的60%。这些结果来自未经任何封装或光浸泡预处理的器件,而基于金的PSC在相同条件下会快速降解,仅保留初始PCE的45%。此外,长期器件稳定性结果表明,对于基于碳的器件,在85°C热应力下,聚[双(4 - 苯基)(2,4,6 - 三甲基苯基)胺](PTAA)是比硫氰酸铜(CuSCN)无机空穴传输材料(HTM)更稳定的聚合物空穴传输材料。这些结果为可扩展的基于碳的PSC改性无添加剂和聚合物HTM铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24b5/10142715/161ba29ea395/nanomaterials-13-01417-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验