Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
Bioessays. 2023 May;45(5):e2300024. doi: 10.1002/bies.202300024. Epub 2023 Mar 14.
Complexes of two or more proteins form many, if not most, of the intracellular "machines" that execute physical and chemical work, and transmit information. Complexes can form from stochastic post-translational interactions of fully formed proteins, but recent attention has shifted to co-translational interactions in which the most common mechanism involves binding of a mature constituent to an incomplete polypeptide emerging from a translating ribosome. Studies in yeast have revealed co-translational interactions during formation of multiple major complexes, and together with recent mammalian cell studies, suggest widespread utilization of the mechanism. These translation-dependent interactions can involve a single or multiple mRNA templates, can be uni- or bi-directional, and can use multi-protein sub-complexes as a binding component. Here, we discuss benefits of co-translational complex assembly including accuracy and efficiency, overcoming hidden interfaces, localized and hierarchical assembly, and reduction of orphan protein degradation, toxicity, and dominant-negative pathogenesis, all serving to improve cell fitness.
两个或多个蛋白质组成的复合物形成了许多(如果不是大多数的话)执行物理和化学工作以及传递信息的细胞内“机器”。复合物可以通过完全形成的蛋白质的随机翻译后相互作用形成,但最近的注意力已经转移到共翻译相互作用上,其中最常见的机制涉及成熟成分与从翻译核糖体中出现的不完全多肽的结合。在酵母中的研究揭示了在多个主要复合物形成过程中的共翻译相互作用,并且与最近的哺乳动物细胞研究一起表明该机制的广泛应用。这些依赖翻译的相互作用可以涉及单个或多个 mRNA 模板,可以是单向或双向的,并且可以使用多蛋白亚复合物作为结合组件。在这里,我们讨论了共翻译复合物组装的好处,包括准确性和效率、克服隐藏界面、局部和分层组装,以及减少孤儿蛋白降解、毒性和显性负发病机制,所有这些都有助于提高细胞适应性。