Suppr超能文献

MAHOMES II:一个用于预测金属结合位点是否为酶的网络服务器。

MAHOMES II: A webserver for predicting if a metal binding site is enzymatic.

机构信息

Center for Computational Biology, The University of Kansas, 2030 Becker Dr, 66047, Lawrence, Kansas, USA.

Department of Molecular Biosciences|, The University of Kansas, Ave. Lawrence KS 66045-3101, 1200, Sunnyside, Kansas, USA.

出版信息

Protein Sci. 2023 Apr;32(4):e4626. doi: 10.1002/pro.4626.

Abstract

Recent advances have enabled high-quality computationally generated structures for proteins with no solved crystal structures. However, protein function data remains largely limited to experimental methods and homology mapping. Since structure determines function, it is natural that methods capable of using computationally generated structures for functional annotations need to be advanced. Our laboratory recently developed a method to distinguish between metalloenzyme and nonenzyme sites. Here we report improvements to this method by upgrading our physicochemical features to alleviate the need for structures with sub-angstrom precision and using machine learning to reduce training data labeling error. Our improved classifier identifies protein bound metal sites as enzymatic or nonenzymatic with 94% precision and 92% recall. We demonstrate that both adjustments increased predictive performance and reliability on sites with sub-angstrom variations. We constructed a set of predicted metalloprotein structures with no solved crystal structures and no detectable homology to our training data. Our model had an accuracy of 90%-97.5% depending on the quality of the predicted structures included in our test. Finally, we found the physicochemical trends that drove this model's successful performance were local protein density, second shell ionizable residue burial, and the pocket's accessibility to the site. We anticipate that our model's ability to correctly identify catalytic metal sites could enable identification of new enzymatic mechanisms and improve de novo metalloenzyme design success rates.

摘要

最近的进展使得能够为没有解决晶体结构的蛋白质生成高质量的计算结构。然而,蛋白质功能数据在很大程度上仍然限于实验方法和同源映射。由于结构决定功能,因此需要开发能够将计算生成的结构用于功能注释的方法。我们实验室最近开发了一种区分金属酶和非酶位点的方法。在这里,我们通过升级我们的物理化学特征来减轻对亚原子精度结构的需求,并使用机器学习来减少训练数据标记错误,从而改进了该方法。我们改进的分类器可以以 94%的精度和 92%的召回率识别蛋白质结合金属位点是酶促的还是非酶促的。我们证明这两个调整都提高了对亚原子变化的预测性能和可靠性。我们构建了一组没有解决晶体结构且与我们的训练数据没有可检测同源性的预测金属蛋白结构。我们的模型在测试中包含的预测结构的质量不同,准确性在 90%-97.5%之间。最后,我们发现驱动该模型成功表现的物理化学趋势是局部蛋白质密度、第二壳可离子化残基埋藏和口袋对位点的可及性。我们预计,我们的模型能够正确识别催化金属位点的能力可以识别新的酶促机制并提高从头设计金属酶的成功率。

相似文献

5
MeCOM: A Method for Comparing Three-Dimensional Metalloenzyme Active Sites.MeCOM:一种比较三维金属酶活性位点的方法。
J Chem Inf Model. 2022 Feb 14;62(3):730-739. doi: 10.1021/acs.jcim.1c01335. Epub 2022 Jan 19.
7
Multiscale Quantum Refinement Approaches for Metalloproteins.多尺度量子精化方法在金属蛋白中的应用。
J Chem Theory Comput. 2021 Jun 8;17(6):3783-3796. doi: 10.1021/acs.jctc.1c00148. Epub 2021 May 25.

本文引用的文献

1
Combinatorial assembly and design of enzymes.酶的组合组装与设计
Science. 2023 Jan 13;379(6628):195-201. doi: 10.1126/science.ade9434. Epub 2023 Jan 12.
4
Highly accurate protein structure prediction for the human proteome.高精准度的人类蛋白质组蛋白结构预测。
Nature. 2021 Aug;596(7873):590-596. doi: 10.1038/s41586-021-03828-1. Epub 2021 Jul 22.
5
Highly accurate protein structure prediction with AlphaFold.利用 AlphaFold 进行高精度蛋白质结构预测。
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
9
How the Local Environment of Functional Sites Regulates Protein Function.功能位点的局部环境如何调节蛋白质功能。
J Am Chem Soc. 2020 Jun 3;142(22):9861-9871. doi: 10.1021/jacs.0c02430. Epub 2020 May 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验