de Lima Tinoco Marcos V, Fujii Lucas R, Nicoliche Caroline Y N, Giordano Gabriela F, Barbosa Julia A, da Rocha Jaqueline F, Dos Santos Gabriel T, Bettini Jefferson, Santhiago Murilo, Strauss Mathias, Lima Renato S
Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil.
Nanoscale. 2023 Mar 30;15(13):6201-6214. doi: 10.1039/d2nr07080d.
While pyrolyzed paper (PP) is a green and abundant material that can provide functionalized electrodes with wide detection windows for a plethora of targets, it poses long-standing challenges against sensing assays such as poor electrical conductivity, with resistivities generally higher than 200.0 mΩ cm (, gold and silver show resistivities 1000-fold lower, ∼0.2 mΩ cm). In this regard, the fundamental hypothesis that drives this work is whether a scalable, cost-effective, and eco-friendly strategy is capable of significantly reducing the resistivity of PP electrodes toward the development of sensitive electrochemical sensors, whether faradaic or capacitive. We address this hypothesis by simply annealing PP under an isopropanol atmosphere for 1 h, reaching resistivities as low as 7 mΩ cm. Specifically, the annealing of PP at 800 or 1000 °C under isopropanol vapor leads to the formation of a highly graphitic nanolayer (∼15 nm) on the PP surface, boosting conductivity as the delocalization of π electrons stemming from carbon sp is favored. The reduction of carbonyl groups and the deposition of dehydrated isopropanol during the annealing process are hypothesized herein as the dominant PP graphitization mechanisms. Electrochemical analyses demonstrated the capability of the annealed PP to increase the charge-transfer kinetics, with the optimum heterogeneous standard rate constant being roughly 3.6 × 10 cm s. This value is larger than the constants reported for other carbon electrodes and indium tin oxide. Furthermore, freestanding fingers of the annealed PP were prototyped using a knife plotter to fabricate impedimetric on-leaf electrodes. These wearable sensors ensured the real-time and monitoring of the loss of water content from soy leaves, outperforming non-annealed electrodes in terms of reproducibility and sensitivity. Such an application is of pivotal importance for precision agriculture and development of agricultural inputs. This work addresses the foundations for the achievement of conductive PP in a scalable, low-cost, simple, and eco-friendly way, without producing any liquid chemical waste, providing new opportunities to translate PP-based sensitive electrochemical devices into practical use.
虽然热解纸(PP)是一种绿色且丰富的材料,可为众多目标提供具有宽检测窗口的功能化电极,但它给传感分析带来了长期挑战,比如导电性差,其电阻率通常高于200.0 mΩ·cm(相比之下,金和银的电阻率低1000倍,约为0.2 mΩ·cm)。在这方面,推动这项工作的基本假设是,一种可扩展、经济高效且环保的策略是否能够显著降低PP电极的电阻率,以用于开发灵敏的电化学传感器,无论是基于法拉第还是电容的。我们通过在异丙醇气氛下简单地对PP进行1小时退火来验证这一假设,得到的电阻率低至7 mΩ·cm。具体而言,在异丙醇蒸汽下于800或1000 °C对PP进行退火会导致在PP表面形成高度石墨化的纳米层(约15 nm),由于碳sp产生的π电子离域化受到促进,从而提高了导电性。本文假设在退火过程中羰基的还原和脱水异丙醇的沉积是PP石墨化的主要机制。电化学分析表明,退火后的PP能够提高电荷转移动力学,最佳异质标准速率常数约为3.6×10 cm/s。这个值大于其他碳电极和氧化铟锡所报道的常数。此外,使用刻刀绘图仪制作了退火PP的独立指状电极原型,以制造基于阻抗的叶上电极。这些可穿戴传感器确保了对大豆叶片水分含量损失的实时监测,在重现性和灵敏度方面优于未退火的电极。这样的应用对于精准农业和农业投入的发展至关重要。这项工作以可扩展、低成本、简单且环保的方式奠定了实现导电PP的基础,不产生任何液体化学废物,为将基于PP的灵敏电化学装置转化为实际应用提供了新机会。